

Welcome to oemof’s documentation!

Contents:

	Getting started
	Documentation

	Installing oemof

	Structure of the oemof cosmos

	Examples

	Got further questions on using oemof?

	Join the developers!

	Keep in touch

	Citing oemof

	License

	About oemof
	The idea of an open framework

	Application Examples

	Why are we developing oemof?

	Why should I contribute?

	Join oemof with your own approach or project

	Installation and setup
	Linux

	Windows

	Mac OSX

	Run the installation_test file

	Using oemof
	oemof-network

	oemof-solph

	oemof-outputlib

	feedinlib

	demandlib

	Developing oemof
	Install the developer version

	Contribute to the documentation

	Contribute to new components

	Collaboration with pull requests

	Tests

	Issue-Management

	Style guidelines

	Naming Conventions

	Using git

	Documentation

	What’s New
	v0.2.2 (July 1, 2018)

	v0.2.1 (March 19, 2018)

	v0.2.0 (January 12, 2018)

	v0.1.4 (March 28, 2017)

	v0.1.2 (March 27, 2017)

	v0.1.1 (November 2, 2016)

	v0.1.0 (November 1, 2016)

	v0.0.7 (May 4, 2016)

	v0.0.6 (April 29, 2016)

	v0.0.5 (April 1, 2016)

	v0.0.4 (March 03, 2016)

	v0.0.3 (January 29, 2016)

	v0.0.2 (December 22, 2015)

	v0.0.1 (November 25, 2015)

	oemof-network
	Graph

	oemof-solph
	How can I use solph?

	Solph components

	Using the investment mode

	Mixed Integer (Linear) Problems

	Adding additional constraints

	The Grouping module (Sets)

	Using the Excel (csv) reader

	Solph Examples

	oemof-outputlib
	Collecting results

	oemof-tools
	Economics

	Helpers

	Logger

	API
	oemof

	oemof package

	oemof.outputlib package

	oemof.solph package

	oemof.tools package

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Oemof stands for “Open Energy System Modelling Framework” and provides a free, open source and clearly documented toolbox to analyse energy supply systems. It is developed in Python and designed as a framework with a modular structure containing several packages which communicate through well defined interfaces.

With oemof we provide base packages for energy system modelling and optimisation.

Everybody is welcome to use and/or develop oemof. Read our Why should I contribute? section.

Contribution is already possible on a low level by simply fixing typos in oemof’s documentation or rephrasing sections which are unclear. If you want to support us that way please fork the oemof repository to your own github account and make changes as described in the github guidelines: https://guides.github.com/activities/hello-world/

	Documentation

	Installing oemof

	Structure of the oemof cosmos

	Examples

	Got further questions on using oemof?

	Join the developers!

	Keep in touch

	Citing oemof

	License

Documentation

Full documentation can be found at readthedocs [http://oemof.readthedocs.org]. Use the project site [http://readthedocs.org/projects/oemof] of readthedocs to choose the version of the documentation. Go to the download page [http://readthedocs.org/projects/oemof/downloads/] to download different versions and formats (pdf, html, epub) of the documentation.

To get the latest news visit and follow our website [https://www.oemof.org].

Installing oemof

If you have a working Python3 environment, use pypi to install the latest oemof version. Python >= 3.5 is recommended. Lower versions may work but are not tested.

pip install oemof

For more details have a look at Installation and setup. There is also a YouTube tutorial [https://www.youtube.com/watch?v=eFvoM36_szM] on how to install oemof under Windows.

The packages feedinlib, demandlib and oemof.db have to be installed separately. See section Using oemof for more details about all oemof packages.

If you want to use the latest features, you might want to install the developer version. See Developing oemof for more information. The developer version is not recommended for productive use.

Structure of the oemof cosmos

Oemof packages are organised in different levels. The basic oemof interfaces are defined by the core libraries (network). The next level contains libraries that depend on the core libraries but do not provide interfaces to other oemof libraries (solph, outputlib). The third level are libraries that do not depend on any oemof interface and therefore can be used as stand-alone application (demandlib, feedinlib). Together with some other recommended projects (pvlib, windpowerlib) the oemof cosmos provides a wealth of tools to model energy systems. If you want to become part of it, feel free to join us.

Examples

The linkage of specific modules of the various packages is called an
application (app) and depicts for example a concrete energy system model.
You can find a large variety of helpful examples in oemof’s example repository [https://github.com/oemof/oemof_examples] on github to download or clone. The examples show optimisations of different energy systems and are supposed to help new users to understand the framework’s structure. There is some elaboration on the examples in the respective repository.

You are welcome to contribute your own examples via a pull request [https://github.com/oemof/examples/pulls] or by sending us an e-mail (see here [https://oemof.org/contact/] for contact information).

Got further questions on using oemof?

If you have questions regarding the use of oemof you can visit the forum at: https://forum.openmod-initiative.org/tags/c/qa/oemof and open a new thread if your questions hasn’t been already answered.

Join the developers!

A warm welcome to all who want to join the developers and contribute to oemof. Information
on the details and how to approach us can be found
in the documentation [http://oemof.readthedocs.io/en/latest/developing_oemof.html] .

Keep in touch

You can become a watcher at our github site [https://github.com/oemof/oemof], but this will bring you quite a few mails and might be more interesting for developers. If you just want to get the latest news you can follow our news-blog at oemof.org [https://oemof.org/].

Citing oemof

We use the zenodo project to get a DOI for each version. Select the version you want to cite.

License

Copyright (C) 2017 oemof developing group

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

About oemof

This overview has been developed to make oemof easy to use and develop. It describes general ideas behind and structures of oemof and its modules.

	The idea of an open framework

	Application Examples

	Why are we developing oemof?

	Why should I contribute?

	Join oemof with your own approach or project

The idea of an open framework

The Open Energy System Modelling Framework has been developed for the modelling and analysis of energy supply systems considering power and heat as well as prospectively mobility.

Oemof has been implemented in Python and uses several Python packages for scientific applications (e.g. mathematical optimisation, network analysis, data analysis), optionally in combination with a PostgreSQL/PostGIS database.
It offers a toolbox of various features needed to build energy system models in high temporal and spatial resolution.
For instance, the wind energy feed-in in a model region can be modelled based on weather data, the CO2-minimal operation of biomass power plants can be calculated or the future energy supply of Europe can be simulated.

The framework consists of different libraries. For the communication between these libraries different interfaces are provided.
The oemof libraries and their modules are used to build what we call an ‘application’ (app) which depicts a concrete energy system model or a subprocess of this model.
Generally, applications can be developed highly individually by the use of one or more libraries depending on the scope and purpose.
The following image illustrates the typical application building process.

[image: The idea of Open Energy System Modelling Framework (oemof)]

It gets clear that applications can be build flexibly using different libraries.
Furthermore, single components of applications can be substituted easily if different functionalities are needed.
This allows for individual application development and provides all degrees of freedom to the developer
which is particularly relevant in environments such as scientific work groups that often work spatially distributed.

Among other applications, the apps ‘renpassG!S’ and ‘reegis’ are currently developed based on the framework.
‘renpassG!S’ enables the simulation of a future European energy system with a high spatial and temporal resolution.
Different expansion pathways of conventional power plants, renewable energies and net infrastructure can be considered.
The app ‘reegis’ provides a simulation of a regional heat and power supply system.
Another application is ‘HESYSOPT’ which has been desined to simulate combined heat and power systems with MILP on the component level.
These three examples show that the modular approach of the framework allows applications with very different objectives.

Application Examples

Some applications are publicly available and continiously developed in these locations:

	renpassG!S [https://github.com/znes/renpass_gis]

	HESYSOPT [https://github.com/znes/HESYSOPT]

	reegis_HP [https://github.com/rl-institut/reegis_hp]

	eos [https://github.com/rl-institut/eos]

More examples and a screenshot gallery can be found on oemof’s official homepage [https://oemof.org/].

Why are we developing oemof?

Energy system models often do not have publicly accessible source code and freely available data and are poorly documented.
The missing transparency slows down the scientific discussion on model quality with regard to certain problems such as grid extension or cross-border interaction between national energy systems.
Besides, energy system models are often developed for a certain application and cannot (or only with great effort) be adjusted to other requirements.

The Center for Sustainable Energy Systems (ZNES) Flensburg together with the Reiner Lemoine Institute (RLI) in Berlin and the Otto-von-Guericke-University of Magdeburg (OVGU)
are developing the Open Energy System Modelling Framework (oemof) to address these problems by offering a free, open and clearly documented framework for energy system modelling.
This transparent approach allows a sound scientific discourse on the underlying models and data.
In this way the assessment of quality and significance of undertaken analyses is improved. Moreover, the modular composition of the framework supports the adjustment to a large number of application purposes.

The open source approach allows a collaborative development of the framework that offers several advantages:

	Synergies - By developing collaboratively synergies between the participating institutes can be utilized.

	Debugging - Through the input of a larger group of users and developers bugs are identified and fixed at an earlier stage.

	Advancement - The oemof-based application profits from further development of the framework.

Why should I contribute?

	You do not want to start at the very beginning. - You are not the first one, who wants to set up a energy system model. So why not start with existing code?

	You want your code to be more stable. - If other people use your code, they may find bugs or will have ideas to improve it.

	Tired of ‘write-only-code’. - Developing as part of a framework encourages you to document sufficiently, so that after years you may still understand your own code.

	You want to talk to other people when you are deadlocked. - People are even more willing to help, if they are interested in what you are doing because they can use it afterwards.

	You want your code to be seen and used. We try to make oemof more and more visible to the modelling community. Together it will be easier to increase the awareness of this framework and therefore for your contribution.

We know, sometimes it is difficult to start on an existing concept. It will take some time to understand it and you will need extra time to document your own stuff.
But once you understand the libraries you will get lots of interesting features, always with the option to fit them to your own needs.

If you first want to try out the collaborative process of software development you can start with a contribution on a low level. Fixing typos in the documentation or rephrasing sentences which are unclear would help us on the one hand and brings you nearer to the collaboration process on the other hand.

For any kind of contribution, please fork the oemof repository to your own github account and make changes as described in the github guidelines: https://guides.github.com/activities/hello-world/

Just contact us if you have any questions!

Join oemof with your own approach or project

Oemof is designed as a framework and there is a lot of space for own ideas or own libraries. No matter if you want a heuristic solver library or different linear solver libraries.
You may want to add tools to analyse the results or something we never heard of.
You want to add a GUI or your application to be linked to. We think, that working together in one framework will increase the probability that somebody will use and test your code (see Why should I contribute?).

Interested? Together we can talk about how to transfer your ideas into oemof or even integrate your code. Maybe we just link to your project and try to adept the API for a better fit in the future.

Also consider joining our developer meetings which take place every 6 months (usually May and December). Just contact us!

Installation and setup

	Linux

	Windows

	Mac OSX

	Run the installation_test file

Following you find guidelines for the installation process for different operation systems.

Linux

Having Python 3 installed

As oemof is designed as a Python package it is mandatory to have Python 3 installed. Python >= 3.5 is recommended. Lower versions may work but are not tested. It is highly recommended to use a virtual environment. See this tutorial [https://docs.python.org/3/tutorial/venv.html] for more help or see the sections below. If you already have a Python 3 environment you can install oemof using pip:

pip install oemof

To use pip you have to install the pypi package. Normally pypi is part of your virtual environment.

Using Linux repositories to install Python

Most Linux distributions will have Python 3 in their repository. Use the specific software management to install it.
If you are using Ubuntu/Debian try executing the following code in your terminal:

sudo apt-get install python3

You can also download different versions of Python via https://www.python.org/downloads/.

Using Virtualenv (community driven)

Skip the steps you have already done. Check your architecture first (32/64 bit).

	Install virtualenv using the package management of your Linux distribution, pip install or install it from source (see virtualenv documentation [https://virtualenv.pypa.io/en/stable/installation/])

	Open terminal to create and activate a virtual environment by typing:

virtualenv -p /usr/bin/python3 your_env_name
source your_env_name/bin/activate

	In terminal type: pip install oemof

	Install a Solver if you want to use solph and execute the solph examples (See Run the installation_test file) to check if the installation of the solver and oemof was successful

Warning: If you have an older version of virtualenv you should update pip pip install --upgrade pip.

Using Anaconda

Skip the steps you have already done. Check your architecture first (32/64 bit).

	Download latest Anaconda (Linux) [https://www.continuum.io/downloads#linux] for Python 3.x (64 or 32 bit)

	Install Anaconda

	Open terminal to create and activate a virtual environment by typing:

conda create -n yourenvname python=3.x
source activate yourenvname

	In terminal type: pip install oemof

	Install a Solver if you want to use solph and execute the solph examples (See Run the installation_test file) to check if the installation of the solver and oemof was successful

Solver

In order to use solph you need to install a solver. There are various commercial and open-source solvers that can be used with oemof.

There are two common OpenSource solvers available (CBC, GLPK), while oemof recommends CBC (Coin-or branch and cut). But sometimes its worth comparing the results of different solvers.

To install the solvers have a look at the package repository of your Linux distribution or search for precompiled packages. GLPK and CBC ares available at Debian, Feodora, Ubuntu and others.

Check the solver installation by executing the test_installation example (see Run the installation_test file).

To learn how to install (other) solvers (Gurobi, Cplex…) have a look at the pyomo solver notes [https://software.sandia.gov/downloads/pub/pyomo/PyomoInstallGuide.html#Solvers].

Windows

If you are new to Python check out the YouTube tutorial [https://www.youtube.com/watch?v=eFvoM36_szM] on how to install oemof under Windows. It will guide you step by step through the installation process, starting
with the installation of Python using WinPython, all the way to executing your first oemof example.

Having Python 3 installed

As oemof is designed as a Phyton-module it is mandatory to have Python 3 installed. Python >= 3.5 is recommended. Lower versions may work but are not tested. If you already have a working Python 3 environment you can install oemof by using pip. Run the following code in the command window of your python environment:

pip install oemof

If pip is not part of your python environment, you have to install the pypi package.

Using WinPython (community driven)

Skip the steps you have already done. Check your architecture first (32/64 bit)

	Download latest WinPython [http://winpython.github.io] for Python 3.x (64 or 32 bit)

	Install WinPython

	Open the ‘WinPython Command Prompt’ and type: pip install oemof

	Install a Windows Solver if you want to use solph and execute the solph examples (See Run the installation_test file) to check if the installation of the solver and oemof was successful

Using Anaconda

Skip the steps you have already done. Check your architecture first (32/64 bit)

	Download latest Anaconda [https://www.continuum.io/downloads#windows] for Python 3.x (64 or 32 bit)

	Install Anaconda

	Open ‘Anaconda Prompt’ to create and activate a virtual environment by typing:

conda create -n yourenvname python=3.x
activate yourenvname

	In ‘Anaconda Prompt’ type: pip install oemof

	Install a Windows Solver if you want to use solph and execute the solph examples (See Run the installation_test file) to check if the installation of the solver and oemof was successful

Windows Solver

In order to use solph you need to install a solver. There are various commercial and open-source solvers that can be used with oemof.

You do not have to install both solvers. Oemof recommends the CBC (Coin-or branch and cut) solver. But sometimes its worth comparing the results of different solvers (e.g. GLPK).

	Downloaded CBC from here (64 [http://ampl.com/dl/open/cbc/cbc-win64.zip] or 32 [http://ampl.com/dl/open/cbc/cbc-win32.zip] bit)

	Download GLPK from here (64/32 bit) [https://sourceforge.net/projects/winglpk/https://sourceforge.net/projects/winglpk/]

	Unpacked CBC/GLPK to any folder (e.g. C:/Users/Somebody/my_programs)

	Add the path of the executable files of both solvers to the PATH variable using this tutorial [http://www.computerhope.com/issues/ch000549.htm]

	Restart Windows

Check the solver installation by executing the test_installation example (see Run the installation_test file).

For commercial solvers (Gurobi, Cplex…) have a look at the pyomo solver notes [https://software.sandia.gov/downloads/pub/pyomo/PyomoInstallGuide.html#Solvers].

Mac OSX

Installation guidelines for Mac OS are still incomplete and not tested. As we do not have Mac users we could not test the following approaches, but they should work. If you are a Mac user please help us to improve this installation guide. Have look at the installation guide of Linux or Windows to get an idea what to do.

You can download python here: https://www.python.org/downloads/mac-osx/. For information on the installation process and on how to install python packages see here: https://docs.python.org/3/using/mac.html.

Virtualenv: http://sourabhbajaj.com/mac-setup/Python/README.html

Anaconda: https://www.continuum.io/downloads#osx

You have to install a solver if you want to use solph and execute the solph examples (See Run the installation_test file) to check if the installation of the solver and oemof was successful.

CBC-solver: https://projects.coin-or.org/Cbc

GLPK-solver: http://arnab-deka.com/posts/2010/02/installing-glpk-on-a-mac/

Run the installation_test file

Test the installation and the installed solver:

To test the whether the installation was successful simply run

oemof_installation_test

in your virtual environment.
If the installation was successful, you will get:

Solver installed with oemof:
glpk: working
cplex: not working
cbc: working
gurobi: working

oemof successfully installed.

as an output.

Using oemof

Oemof is a framework and even though it is in an early stage it already provides useful tools to model energy systems. To model an energy system you have to write your own application in which you combine the oemof libraries for you specific task. The example section [https://github.com/oemof/oemof/tree/master/examples] shows how an oemof application may look like.

Current oemof libraries

	oemof-network

	oemof-solph

	oemof-outputlib

	feedinlib

	demandlib

oemof-network

The oemof-network library is part of the oemof installation. By now it can be used to define energy systems as a network with components and buses. Every component should be connected to one or more buses. After definition, a component has to explicitely be added to its energy system. Allowed components are sources, sinks and transformer.

[image: alternate text]

The code of the example above:

from oemof.network import *
from oemof.energy_system import *

create the energy system
es = EnergySystem()

create bus 1
bus_1 = Bus(label="bus_1")

create bus 2
bus_2 = Bus(label="bus_2")

add bus 1 and bus 2 to energy system
es.add(bus_1, bus_2)

create and add sink 1 to energy system
es.add(Sink(label='sink_1', inputs={bus_1: []}))

create and add sink 2 to energy system
es.add(Sink(label='sink_2', inputs={bus_2: []}))

create and add source to energy system
es.add(Source(label='source', outputs={bus_1: []}))

create and add transformer to energy system
es.add(Transformer(label='transformer', inputs={bus_1: []}, outputs={bus_2: []}))

The network class is aimed to be very generic and might have some network analyse tools in the future. By now the network library is mainly used as the base for the solph library.

oemof-solph

The oemof-solph library is part of the oemof installation. Solph is designed to create and solve linear or mixed-integer
linear optimization problems. It is based on optimization modelling language pyomo.

To use solph at least one linear solver has to be installed on your system. See the pyomo installation guide [https://software.sandia.gov/downloads/pub/pyomo/PyomoInstallGuide.html#Solvers] to learn which solvers are supported. Solph is tested with the open source solver cbc and the gurobi solver (free for academic use). The open glpk solver recently showed some odd behaviour.

The formulation of the energy system is based on the oemof-network library but contains additional components such as storages. Furthermore the network class are enhanced with additional parameters such as efficiencies, bounds, cost and more. See the API documentation for more details. Try the examples [https://github.com/oemof/oemof_examples] to learn how to build a linear energy system.

oemof-outputlib

The oemof-outputlib library is part of the oemof installation. It collects the results of an optimisation in a dictionary holding scalar variables and pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] for time dependend output. This makes it easy to process or plot the results using the capabilities of the pandas library.

The following code collects the results in a pandas DataFrame and selects the data
for a specific component, in this case ‘heat’.

results = outputlib.processing.results(om)
heat = outputlib.views.node(results, 'heat')

To visualize results, either use pandas own visualization functionality [http://pandas.pydata.org/pandas-docs/version/0.18.1/visualization.html], matplotlib or the plot library of your
choice. Some existing plot methods can be found in a separate repository
oemof_visio [https://github.com/oemof/oemof_visio]
which can be helpful when looking for a quick way to create a plot.

feedinlib

The feedinlib [https://github.com/oemof/feedinlib] library is not part of the oemof installation and has to be installed separately using pypi. It serves as an interface between Open Data weather data and libraries to calculate feedin timeseries for fluctuating renewable energy sources.

It is currently under revision (see here [https://github.com/oemof/feedinlib/issues/29] for further information). To begin with it will provide an interface to the pvlib [https://github.com/pvlib/pvlib-python] and windpowerlib [https://github.com/wind-python/windpowerlib] and functions to download MERRA2 weather data and open_FRED weather data [https://openfredproject.wordpress.com].
See documentation of the feedinlib [http://feedinlib.readthedocs.io/en/stable/] for a full description of the library.

demandlib

The demandlib [http://demandlib.readthedocs.io/en/latest/getting_started.html] library is not part of the oemof installation and has to be installed separately using pypi. At the current state the demandlib can be used to create load profiles for elctricity and heat knowing the annual demand. See the documentation of the demandlib [http://demandlib.readthedocs.io/en/latest/] for examples and a full description of the library.

Developing oemof

Oemof is developed collaboratively and therefore driven by its community. While advancing
as a user of oemof, you may find situations that demand solutions that are not readily
available. In this case, your solution may be of help to other users as well. Contributing
to the development of oemof is good for two reasons: Your code may help others and you
increase the quality of your code through the review of other developers. Read also these
arguments on
why you should contribute [http://oemof.readthedocs.io/en/latest/about_oemof.html?highlight=why%20should#why-should-i-contribute].

A first step to get involved with development can be contributing a component that is
not part of the current version that you defined for your energy system. We have a module
oemof.solph.custom that is dedicated to collect custom components created by users. Feel free
to start a pull request and contribute.

Another way to join the developers and learn how to contribute is to help improve the documentation.
If you find that some part could be more clear or if you even find a mistake, please
consider fixing it and creating a pull request.

New developments that provide new functionality may enter oemof at different locations.
Please feel free to discuss contributions by creating a pull request or an issue.

In the following you find important notes for developing oemof and elements within
the framework. On whatever level you may want to start, we highly encourage you
to contribute to the further development of oemof. If you want to collaborate see
description below or contact us.

	Install the developer version

	Contribute to the documentation

	Contribute to new components

	Collaboration with pull requests

	Tests

	Issue-Management

	Style guidelines

	Naming Conventions

	Using git

	Documentation

Install the developer version

To avoid problems make sure you have fully uninstalled previous versions of oemof. It is highly recommended to use a virtual environment. See this virtualenv tutorial [https://docs.python.org/3/tutorial/venv.html] for more help. Afterwards you have
to clone the repository. See the github documentation [https://help.github.com/articles/cloning-a-repository/] to learn how to clone a repository.
Now you can install the cloned repository using pip:

pip install -e /path/to/the/repository

	Newly added required packages (via PyPi) can be installed by performing a manual

	upgrade of oemof. In that case run:

pip install --upgrade -e /path/to/the/repository

Contribute to the documentation

If you want to contribute by improving the documentation (typos, grammar, comprehensibility), please use the developer version of the dev branch at
readthedocs.org [http://oemof.readthedocs.org/en/latest/].
Every fixed typo helps.

Contribute to new components

You can develop a new component according to your needs. Therefore you can use the module oemof.solph.custom which collects custom components created by users and lowers the entry barrier for contributing.

Your code should fit to the Issue-Management and the docstring should be complete and hold the equations used in the constraints. But there are several steps you do not necessarily need to fulfill when contributing to oemof.solph.custom: you do not need to meet the Naming Conventions. Also compatiblity to the results-API must not be guaranteed. Further you do not need to test your components or adapt the documentation. These steps are all necessary once your custom component becomes a constant part of oemof (oemof.solph.components) and are described here: Generally the following steps are required when changing, adding or removing code. But in the first step have a look at existing custom components created by other users in oemof.solph.custom and easily create your own if you need.

Collaboration with pull requests

To collaborate use the pull request functionality of github as described here: https://guides.github.com/activities/hello-world/

How to create a pull request

	Fork the oemof repository to your own github account.

	Change, add or remove code.

	Commit your changes.

	Create a pull request and describe what you will do and why. Please use the pull request template we offer. It will be shown to you when you click on “New pull request”.

	Wait for approval.

Generally the following steps are required when changing, adding or removing code

	Read the Issue-Management and Naming Conventions and follow them

	Add new tests according to what you have done

	Add/change the documentation (new feature, API changes …)

	Add a whatsnew entry and your name to Contributors

	Check if all Tests still work.

Tests

Run the following test before pushing a successful merge.

nosetests -w "/path/to/oemof" --with-doctest

Issue-Management

A good way for communication with the developer group are issues. If you
find a bug, want to contribute an enhancement or have a question on a specific problem
in development you want to discuss, please create an issue:

	describing your point accurately

	using the list of category tags

	addressing other developers

If you want to address other developers you can use @name-of-developer, or
use e.g. @oemof-solph to address a team. Here [https://github.com/orgs/oemof/teams]
you can find an overview over existing teams on different subjects and their members.

Look at the existing issues to get an idea on the usage of issues.

Style guidelines

We mostly follow standard guidelines instead of developing own rules. So if anything is not defined in this section, search for a PEP rule [https://www.python.org/dev/peps/] and follow it.

Docstrings

We decided to use the style of the numpydoc docstrings. See the following link for an
example [https://github.com/numpy/numpy/blob/master/doc/example.py].

Code commenting

Code comments are block and inline comments in the source code. They can help to understand the code and should be utilized “as much as necessary, as little as possible”. When writing comments follow the PEP 0008 style guide: https://www.python.org/dev/peps/pep-0008/#comments.

PEP8 (Python Style Guide)

	We adhere to PEP8 [https://www.python.org/dev/peps/pep-0008/] for any code
produced in the framework.

	We use pylint to check your code. Pylint is integrated in many IDEs and
Editors. Check here [http://docs.pylint.org/ide-integration] or ask the
maintainer of your IDE or Editor

	Some IDEs have pep8 checkers, which are very helpful, especially for python
beginners.

Quoted strings

As there is no recommendation in the PEP rules we use double quotes for strings read by humans such as logging/error messages and single quotes for internal strings such as keys and column names. However one can deviate from this rules if the string contains a double or single quote to avoid escape characters. According to PEP 257 [http://legacy.python.org/dev/peps/pep-0257/] and numpydoc we use three double quotes for docstrings.

logging.info("We use double quotes for messages")

my_dictionary.get('key_string')

logging.warning('Use three " to quote docstrings!' # exception to avoid escape characters

Naming Conventions

	We use plural in the code for modules if there is possibly more than one child
class (e.g. import transformers AND NOT transformer). If there are arrays in
the code that contain multiple elements they have to be named in plural (e.g.
transformers = [T1, T2,…]).

	Please, follow the naming conventions of
pylint [http://pylint-messages.wikidot.com/messages:c0103]

	Use talking names

	Variables/Objects: Name it after the data they describe
(power_line, wind_speed)

	Functions/Method: Name it after what they do: use verbs
(get_wind_speed, set_parameter)

Using git

Branching model

So far we adhere mostly to the git branching model by
Vincent Driessen [http://nvie.com/posts/a-successful-git-branching-model/].

Differences are:

	instead of the name origin/develop we call the branch origin/dev.

	feature branches are named like features/*

	release branches are named like releases/*

Commit message

Use this nice little commit tutorial [http://chris.beams.io/posts/git-commit/] to
learn how to write a nice commit message.

Documentation

The general implementation-independent documentation such as installation guide, flow charts, and mathematical models is done via ReStructuredText (rst). The files can be found in the folder /oemof/doc. For further information on restructured text see: http://docutils.sourceforge.net/rst.html.

What’s New

These are new features and improvements of note in each release

Releases

	v0.2.2 (July 1, 2018)

	v0.2.1 (March 19, 2018)

	v0.2.0 (January 12, 2018)

	v0.1.4 (March 28, 2017)

	v0.1.2 (March 27, 2017)

	v0.1.1 (November 2, 2016)

	v0.1.0 (November 1, 2016)

	v0.0.7 (May 4, 2016)

	v0.0.6 (April 29, 2016)

	v0.0.5 (April 1, 2016)

	v0.0.4 (March 03, 2016)

	v0.0.3 (January 29, 2016)

	v0.0.2 (December 22, 2015)

	v0.0.1 (November 25, 2015)

v0.2.2 (July 1, 2018)

API changes

	The storage API has been revised, even though it is still possible to use the
old API. In that case a warning is raised
(Issue #491 [https://github.com/oemof/oemof/issues/491]).

	The newly introduced parm_results are not results and therefore renamed to
parameter_as_dict. The old name is still valid but raises a warning.

New features

	We added a new attribute existing to the solph.options.Investement class.
It will now be possible to run investment optimization based on already
installed capacity of a component.
Take a look on Using the investment mode for usage of this option.
(Issue #489 [https://github.com/oemof/oemof/issues/489]).

	Investement variables for the capacity and the flows are now decoupled to
enable more flexibility. It is possible to couple the flows to the capacity,
the flows to itself or to not couple anything. The newly added attributes
invest_relation_input_output, invest_relation_input_capacity and
invest_relation_output_capacity replace the existing attributes
nominal_input_capacity_ratio and nominal_input_capacity_ratio for the
investment mode. In case of the dispatch mode one should use the
nominal_value of the Flow classes. The attributes
nominal_input_capacity_ratio and nominal_input_capacity_ratio will be
removed in v0.3.0. Please adapt your application to avoid problems in the
future (Issue #480 [https://github.com/oemof/oemof/issues/480]).

	We now have experimental support for deserializing an energy system from a
tabular data package [https://frictionlessdata.io/data-packages/]. Since
we have to extend the datapackage format a bit, the specification is not yet
finalized and documentation as well as tests range from sparse to
nonexistent. But anyone who wishes to help with the code is welcome to check
it out in the datapackage module.

New components

Documentation

	The documentation of the storage
storage component [http://oemof.readthedocs.io/en/stable/oemof_solph.html#genericstorage-component] has been improved.

	The documentation of the
Extraction Turbine [https://oemof.readthedocs.io/en/latest/oemof_solph.html#extractionturbinechp-component] has been improved.

Known issues

	It is not possible to model one time step with oemof.solph. You have to
model at least two timesteps (Issue #306 [https://github.com/oemof/oemof/issues/306]). Please leave a comment if this bug affects you.

Bug fixes

	Fix file extension check to dump a graph correctly as .graphml-file

	The full constraint set of the ExtractionTurbineCHP class was only build for
one object. If more than one object was present the input/output constraint
was missing. This lead to wrong results.

	In the solph constraints module the emission constraint did not include the
timeincrement from the model which has now be fixed.

	The parameter_as_dict (former: param_results) do work with the views
functions now (Issue #494 [https://github.com/oemof/oemof/issues/494]).

Testing

	The test coverage has been increased (>80%). oemof has experimental areas to
test new functions. These functions are marked as experimental and will not
be tested. Therefore the real coverage is even higher.

Other changes

	Subclasses of Node are no longer optimized
using __slots__ [https://docs.python.org/3/reference/datamodel.html#slots].
The abstract parent class still defines __slots__ so that custom subclasses still have the
option of using it.

Contributors

	Fabian Büllesbach

	Guido Plessmann

	Simon Hilpert

	Stephan Günther

	Uwe Krien

v0.2.1 (March 19, 2018)

API changes

	The function create_nx_graph only takes an energysystem as argument,
not a solph model. As it is not a major release you can still pass
a Model but you should adapt your application as soon as possible.
(Issue #439 [https://github.com/oemof/oemof/issues/439])

New features

	It is now possible determine minimum up and downtimes for nonconvex flows.
Check the oemof_examples [https://github.com/oemof/oemof_examples]
repository for an exemplary usage.

	Startup and shutdown costs can now be defined time-dependent.

	The graph module has been revised.
(Issue #439 [https://github.com/oemof/oemof/issues/439])

	You can now store a graph to disc as .graphml file to open it in yEd
with labels.

	You can add weight to edges.

	Labels are attached to the nodes.

	Two functions get_node_by_name and filter_nodes have been added that
allow to get specified nodes or nodes of one kind from the results
dictionary. (Issue #426 [https://github.com/oemof/oemof/issues/426])

	A new function param_results() collects all parameters of nodes and flows
in a dictionary similar to the results dictionary.
(Issue #445 [https://github.com/oemof/oemof/issues/445])

	In outputlib.views.node(), an option for multiindex dataframe has been added.

Documentation

	Some small fixes and corrected typos.

Known issues

	It is not possible to model one time step with oemof.solph. You have to
model at least two timesteps
(Issue #306 [https://github.com/oemof/oemof/issues/306]). Please leave a
comment if this bug affects you.

Bug fixes

	Shutdown costs for nonconvex flows are now accounted within the objective
which was not the case before due to a naming error.

	Console script oemof_test_installation has been fixed.
(Issue #452 [https://github.com/oemof/oemof/issues/452])

	Adapt solph to API change in the Pyomo package.

	Deserializing a Node leads to an object which
was no longer serializable. This is fixed now. Node instances should be able to be dumped and restored an
arbitraty amount of times.

	Adding timesteps to index of constraint for component el-line
fixes an issue with pyomo.

Testing

	New console script test_oemof has been added (experimental).
(Issue #453 [https://github.com/oemof/oemof/issues/453])

Other changes

	Internal change: Unnecessary list extensions while creating a model are
avoided, which leads to a decrease in runtime.
(Issue #438 [https://github.com/oemof/oemof/issues/438])

	The negative/positive gradient attributes are dictionaries. In the
constructor they moved from sequences to a new dictionaries argument.
(Issue #437 [https://github.com/oemof/oemof/issues/437])

	License agreement was adapted according to the reuse project
(Issue #442 [https://github.com/oemof/oemof/issues/442])

	Code of conduct was added.
(Issue #440 [https://github.com/oemof/oemof/issues/440])

	Version of required packages is now limited to the most actual version
(Issue #464 [https://github.com/oemof/oemof/issues/464])

Contributors

	Cord Kaldemeyer

	Jann Launer

	Simon Hilpert

	Stephan Günther

	Uwe Krien

v0.2.0 (January 12, 2018)

API changes

	The NodesFromCSV has been removed from the code base. An alternative excel
(spreadsheet) reader is provided in the newly created
excel example in the oemof_examples [https://github.com/oemof/oemof_examples/tree/master/examples/oemof_0.2/excel_reader]
repository.

	LinearTransformer and LinearN1Transformer classes are now combined within one
Transformer class. The new class has n inputs and n outputs. Please note that
the definition of the conversion factors (for N1) has changed. See the new
docstring of Transformer class to avoid errors
(Issue #351 [https://github.com/oemof/oemof/issues/351]).

	The oemof.solph.network.Storage class has been renamed and moved to
oemof.solph.components.GenericStorage.

	As the example section has been moved to a new repository the oemof_example
command was removed. Use oemof_installation_test to check your installation
and the installed solvers.

	OperationalModel has been renamed to Model. The es parameter was
renamed to energysystem parameter.

	Nodes are no longer automatically added to the
most recently created energy system. You can still restore the old automatic
registration by manually assigning an energy system to Node.registry. On the other hand you can still explicitly
add nodes to an energy system. This option has been made a bit more
feature rich by the way, but see below for more on this.
Also check the
oemof_examples [https://github.com/oemof/oemof_examples] repository
for more information on the usage.

	The fixed_costs attribute of the nodes
has been removed. See
(Issue #407 [https://github.com/oemof/oemof/issues/407]) for more
information.

	The classes DataFramePlot and
ResultsDataFrame have been removed
due to the redesign of the outputlib module.

New features

	A new oemof_examples [https://github.com/oemof/oemof_examples] repository
with some new examples was created.

	A new outputlib module has been created to provide a convenient data structure
for optimization results and enable quick analyses.
All decision variables of a Node are now collected automatically which
enables an easier development of custom components. See the revised
oemof-outputlib documentation for more details or have a look at
the oemof_examples [https://github.com/oemof/oemof_examples] repository
for information on the usage. Keep your eyes open, some new functions will
come soon that make the processing of the results easier. See the actual pull
request or issues for detailed information.

	The transformer class can now be used with n inputs and n outputs (
Transformer)

	A new module with useful additional constraints were created with these
constraints global emission or investment limits can be set. Furthermore
it is possible to connect investment variables. Please add your own additional
constraints or let us know what is needed in the future.

	A module to create a networkx graph from your energy system or your
optimisation model was added. You can use networkx to plot and analyse graphs.
See Graph in the documentation for more information.

	It’s now possible to modify a node's
inputs and
outputs by inserting and removing
nodes to and from the correspoding dictionaries.
Outputs where already working
previously, but due to an implementation quirk, inputs did not behave as expected. This is now fixed.

	One can now explicitly add
nodes to an energy system in bulk using * and ** syntax. For
the latter case, the values of the dictionary passed in
will be added.

	New components can now be added to the custom.py module. Components in this module
are indicated as in a testing state. Use them with care. This lowers the entry
barriers to test new components within the solph structure and find other testers.

New components

	The nodes ElectricalLine
and ElectricalBus can be used
for Linear Optimal Powerflow calculation based on angle formulations.
These components have been added to the solph.custom module.
Though it should work correctly, it is in a preliminary stage.
Please check your results. Feedback is welcome!

	The custom component Link can now be used to model
a bidirectional connection within one component. Check out the example in the
oemof_examples [https://github.com/oemof/oemof_examples] repository.

	The component GenericCHP can be
used to model different CHP types such as extraction or back-pressure turbines
and motoric plants. The component uses a mixed-integer linear formulation and
can be adapted to different technical layouts with a high level of detail.
Check out the example in the
oemof_examples [https://github.com/oemof/oemof_examples] repository.

	The component GenericCAES can be
used to model different concepts of compressed air energy storage. Technical
concepts such as diabatic or adiabatic layouts can be modelled at a high level
of detail. The component uses a mixed-integer linear formulation.

	The custom component
GenericOffsetTransformer
can be used to model components with load ranges such as heat pumps and also
uses a mixed-integer linear formulation.

Documentation

	Large parts of the documentation have been proofread and improved since
the last developer meeting in Flensburg.

	The solph documentation has got an extra section with all existing components
(Solph components).

	The developer documentation has been developed to lower the barriers for new
developers. Furthermore, a template for pull request was created.

Known issues

	It is not possible to model one time step with oemof.solph. You have to model
at least two timesteps
(Issue #306 [https://github.com/oemof/oemof/issues/306]). Please leave a
comment if this bug affects you.

Bug fixes

	LP-file tests are now invariant against sign changes in equations, because
the equations are now normalized to always have non-negative right hand
sides.

Testing

	All known and newly created components are now tested within an independent
testing environment which can be found in /tests/.

	Other testing routines have been streamlined and reviewed and
example tests have been integrated in the nosetest environment.

Other changes

	The plot functionalities have been removed completely from the outputlib as
they are less a necessary part but more an optional tool .
Basic plotting examples that show how to quickly create plots from
optimization results can now be found in the
oemof_examples [https://github.com/oemof/oemof_examples] repository.
You can still find the “old” standard plots within the
oemof_visio [https://github.com/oemof/oemof_visio] repository as they are
now maintained separately.

	A user forum [https://forum.openmod-initiative.org/tags/c/qa/oemof] has
been created to answer use questions.

Contributors

	Cord Kaldemeyer

	Jens-Olaf Delfs

	Stephan Günther

	Simon Hilpert

	Uwe Krien

v0.1.4 (March 28, 2017)

Bug fixes

	fix examples (issue #298 [https://github.com/oemof/oemof_base/issues/298])

Documentation

	Adapt installation guide.

Contributors

	Uwe Krien

	Stephan Günther

v0.1.2 (March 27, 2017)

New features

	Revise examples - clearer naming, cleaner code, all examples work with cbc solver (issue #238 [https://github.com/oemof/oemof_base/issues/238], issue #247 [https://github.com/oemof/oemof_base/issues/247]).

	Add option to choose solver when executing the examples (issue #247 [https://github.com/oemof/oemof_base/issues/247]).

	Add new transformer class: VariableFractionTransformer (child class of LinearTransformer). This class represents transformers with a variable fraction between its output flows. In contrast to the LinearTransformer by now it is restricted to two output flows.(issue #248 [https://github.com/oemof/oemof/pull/248])

	Add new transformer class: N1Transformer (counterpart of LinearTransformer). This class allows to have multiple inputflows that are converted into one output flow e.g. heat pumps or mixing-components.

	Allow to set addtional flow attributes inside NodesFromCSV in solph inputlib

	Add economics module to calculate investment annuities (more to come in future versions)

	Add module to store input data in multiple csv files and merge by preprocessing

	Allow to slice all information around busses via a new method of the ResultsDataFrame

	Add the option to save formatted balances around busses as single csv files via a new method of the ResultsDataFrame

Documentation

	Improve the installation guide.

Bug fixes

	Allow conversion factors as a sequence in the CSV reader

Other changes

	Speed up constraint-building process by removing unnecessary method call

	Clean up the code according to pep8 and pylint

Contributors

	Cord Kaldemeyer

	Guido Plessmann

	Uwe Krien

	Simon Hilpert

	Stephan Günther

v0.1.1 (November 2, 2016)

Hot fix release to make examples executable.

Bug fixes

	Fix copy of default logging.ini (issue #235 [https://github.com/oemof/oemof_base/issues/235])

	Add matplotlib to requirements to make examples executable after installation (issue #236 [https://github.com/oemof/oemof_base/issues/236])

Contributors

	Guido Plessmann

	Uwe Krien

v0.1.0 (November 1, 2016)

The framework provides the basis for a great range of different energy
system model types, ranging from LP bottom-up (power and heat) economic dispatch
models with optional investment to MILP operational unit commitment models.

With v0.1.0 we refactored oemof (not backward compatible!) to bring the
implementation in line with the general concept. Hence, the API of components
has changed significantly and we introduced the new ‘Flow’ component. Besides
an extensive grouping functionality for automatic creation of constraints based
on component input data the documentation has been revised.

We provide examples to show the broad range of possible applications and the
frameworks flexibility.

API changes

	The demandlib is no longer part of the oemof package. It has its own
package now: (demandlib [https://github.com/oemof/demandlib])

New features

	Solph’s EnergySystem now
automatically uses solph’s GROUPINGS in addition to any user supplied
ones.
See the API documentation for more information.

	The groupings introduced in version
0.0.5 now have more features, more documentation and should generally be
pretty usable:

	They moved to their own module: oemof.groupings and deprecated
constructs ensuring compatibility with prior versions have been removed.

	It’s possible to assign a node to multiple groups from one
Grouping by returning a list of group
keys from key.

	If you use a non callable object as the key parameter to Groupings, the constructor will not make an attempt to
call them, but use the object directly as a key.

	There’s now a filter parameter,
enabling a more concise way of filtering group contents than using
value.

Documentation

	Complete revision of the documentation. We hope it is now more intuitive and easier to understand.

Testing

	Create a structure to use examples as system tests (issue #160 [https://github.com/oemof/oemof_base/issues/160])

Bug fixes

	Fix relative path of logger (issue #201 [https://github.com/oemof/oemof_base/issues/201])

	More path fixes regarding installation via pip

Other changes

	Travis CI will now check PR’s automatically

	Examples executable from command-line (issue #227 [https://github.com/oemof/oemof_base/issues/227])

Contributors

	Stephan Günther

	Simon Hilpert

	Uwe Krien

	Guido Pleßmann

	Cord Kaldemeyer

v0.0.7 (May 4, 2016)

Bug fixes

	Exclude non working pyomo version

v0.0.6 (April 29, 2016)

New features

	It is now possible to choose whether or not the heat load profile generated
with the BDEW heat load profile method should only include space heating
or space heating and warm water combined.
(Issue #130 [https://github.com/oemof/oemof/issues/130])

	Add possibility to change the order of the columns of a DataFrame subset. This is useful to change the order of stacked plots. (Issue #148 [https://github.com/oemof/oemof/issues/148])

Documentation

Testing

	Fix constraint tests (Issue #137 [https://github.com/oemof/oemof/issues/137])

Bug fixes

	Use of wrong columns in generation of SF vector in BDEW heat load profile
generation (Issue #129 [https://github.com/oemof/oemof/issues/129])

	Use of wrong temperature vector in generation of h vector in BDEW heat load
profile generation.

Other changes

Contributors

	Uwe Krien

	Stephan Günther

	Simon Hilpert

	Cord Kaldemeyer

	Birgit Schachler

v0.0.5 (April 1, 2016)

New features

	There’s now a flexible transformer
with two inputs and one output.
(Issue #116 [https://github.com/oemof/oemof_base/issues/116])

	You now have the option create special groups of entities in your energy
system. The feature is not yet fully implemented, but simple use cases are
usable already. (Issue #60 [https://github.com/oemof/oemof_base/issues/60])

Documentation

	The documentation of the electrical demand class has been cleaned up.

	The API documentation now has its own section so it
doesn’t clutter up the main
navigation sidebar so much anymore.

Testing

	There’s now a dedicated module/suite testing solph constraints.

	This suite now has proper fixtures (i.e. setup()/teardown()
methods) making them (hopefully) independent of the order in which they are
run (which, previously, they where not).

Bug fixes

	Searching for oemof’s configuration directory is now done in a platform
independent manner.
(Issue #122 [https://github.com/oemof/oemof_base/issues/122])

	Weeks no longer have more than seven days.
(Issue #126 [https://github.com/oemof/oemof_base/issues/126])

Other changes

	Oemof has a new dependency: dill [https://pypi.python.org/pypi/dill]. It
enables serialization of less common types and acts as a drop in replacement
for pickle [https://docs.python.org/3/library/pickle.html].

	Demandlib’s API has been simplified.

Contributors

	Uwe Krien

	Stephan Günther

	Guido Pleßmann

v0.0.4 (March 03, 2016)

New features

	Revise the outputlib according to (issue #54 [https://github.com/oemof/oemof_base/issues/54])

	Add postheating device to transport energy between two buses with different temperature levels (issue #97 [https://github.com/oemof/oemof_base/issues/97])

	Better integration with pandas

Documentation

	Update developer notes

Testing

	Described testing procedures in developer notes

	New constraint tests for heating buses

Bug fixes

	Use of pyomo fast build

	Broken result-DataFrame in outputlib

	Dumping of EnergySystem

Other changes

	PEP8

Contributors

	Cord Kaldemeyer

	Uwe Krien

	Simon Hilpert

	Stephan Günther

	Clemens Wingenbach

	Elisa Papdis

	Martin Soethe

	Guido Plessmann

v0.0.3 (January 29, 2016)

New features

	Added a class to convert the results dictionary to a multiindex DataFrame (issue #36 [https://github.com/oemof/oemof_base/issues/36])

	Added a basic plot library (issue #36 [https://github.com/oemof/oemof_base/issues/36])

	Add logging functionalities (issue #28 [https://github.com/oemof/oemof_base/issues/28])

	Add entities_from_csv functionality for creating of entities from csv-files

	Add a time-depended upper bound for the output of a component (issue #65 [https://github.com/oemof/oemof_base/issues/65])

	Add fast_build functionlity for pyomo models in solph module (issue #68 [https://github.com/oemof/oemof_base/issues/68])

	The package is no longer named oemof_base but is now just called oemof.

	The results dictionary stored in the energy system now contains an
attribute for the objective function and for objects which have special
result attributes, those are now accessible under the object keys, too.
(issue #58 [https://github.com/oemof/oemof_base/issues/58])

Documentation

	Added the Readme.rst as “Getting started” to the documentation.

	Fixed installation description (issue #38 [https://github.com/oemof/oemof_base/issues/38])

	Improved the developer notes.

Testing

	With this release we start implementing nosetests (issue #47 [https://github.com/oemof/oemof_base/issues/47]

	Tests added to test constraints and the registration process (issue #73 [https://github.com/oemof/oemof_base/issues/73]).

Bug fixes

	Fix contraints in solph

	Fix pep8

Other changes

Contributors

	Cord Kaldemeyer

	Uwe Krien

	Clemens Wingenbach

	Simon Hilpert

	Stephan Günther

v0.0.2 (December 22, 2015)

New features

	Adding a definition of a default oemof logger (issue #28 [https://github.com/oemof/oemof_base/issues/28])

	Revise the EnergySystem class according to the oemof developing meeting (issue #25 [https://github.com/oemof/oemof_base/issues/25])

	Add a dump and restore method to the EnergySystem class to dump/restore its attributes (issue #31 [https://github.com/oemof/oemof_base/issues/31])

	Functionality for minimum up- and downtime constraints (oemof.solph.linear_mixed_integer_constraints module)

	Add relax option to simulation class for calculation of linear relaxed mixed integer problems

	Instances of EnergySystem
now keep track of Entities via the
entities attribute.
(issue #20 [https://github.com/oemof/oemof_base/issues/20])

	There’s now a standard way of working with the results obtained via a call
to OptimizationModel#results.
See its documentation, the documentation of EnergySystem#optimize and finally the discussion
at issue #33 [https://github.com/oemof/oemof_base/issues/33] for more
information.

	New class VariableEfficiencyCHP
to model combined heat and power units with variable electrical efficiency.

	New methods for VariableEfficiencyCHP inside
the solph-module:

	MILP-constraint

	Linear-constraint

Documentation

	missing docstrings of the core subpackage added (issue #9 [https://github.com/oemof/oemof_base/issues/9])

	missing figures of the meta-documentation added

	missing content in developer notes (issue #34 [https://github.com/oemof/oemof_base/issues/34])

Testing

Bug fixes

	now the api-docs can be read on readthedocs.org

	a storage automically calculates its maximum output/input if the capacity and the c-rate is given (issue #27 [https://github.com/oemof/oemof_base/issues/27])

	Fix error in accessing dual variables in oemof.solph.postprocessing

Other changes

Contributors

	Uwe Krien

	Simon Hilpert

	Cord Kaldemeyer

	Guido Pleßmann

	Stephan Günther

v0.0.1 (November 25, 2015)

First release by the oemof developing group.

oemof-network

The modeling of energy supply systems and its variety of components has a clearly structured approach within the oemof framework. Thus, energy supply systems with different levels of complexity can be based on equal basic module blocks. Those form an universal basic structure.

A node is either a bus or a component. A bus is always connected with one or several components. Likewise components are always connected with one or several buses. Based on their characteristics components are divided into several sub types.

Transformers have any number of inputs and outputs, e.g. a CHP takes from a bus of type ‘gas’ and feeds into a bus of type ‘electricity’ and a bus of type ‘heat’. With additional information like parameters and transfer functions input and output can be specified. Using the example of a gas turbine, the resource consumption (input) is related to the provided end energy (output) by means of an conversion factor. Components of type transformer can also be used to model transmission lines.

A sink has only an input but no output. With sink consumers like households can be modeled. But also for modelling excess energy you would use a sink.

A source has exactly one output but no input. Thus for example, wind energy and photovoltaic plants can be modeled.

Components and buses can be combined to an energy system. Components and buses are nodes, connected among each other through edges which are the inputs and outputs of the components. Such a model can be interpreted mathematically as bipartite graph as buses are solely connected to components and vice versa. Thereby the in- and outputs of the components are the directed edges of the graph. The components and buses themselves are the nodes of the graph.

oemof-network is part of oemofs core and contains the base classes that are used in oemof-solph. You do not need to define your energy system on the network level as all components can be found in oemof-solph, too. You may want to inherit from oemof-network components if you want to create new components.

Graph

In the graph module you will find a function to create a networkx graph from an energy system or solph model. The networkx package provides many features to analyse, draw and export graphs. See the networkx documentation [https://networkx.github.io/documentation/stable/] for more details. See the API-doc of graph for all details and an example. The graph module can be used with energy systems of solph as well.

oemof-solph

Solph is an oemof-package, designed to create and solve linear or mixed-integer linear optimization problems. The packages is based on pyomo. To create an energy system model the oemof-network is used and extended by components such as storages. To get started with solph, checkout the examples in the Solph Examples section.

	How can I use solph?

	Set up an energy system

	Add components to the energy system

	Optimise your energy system

	Analysing your results

	Solph components

	Sink (basic)

	Source (basic)

	Transformer (basic)

	ExtractionTurbineCHP (component)

	GenericCAES (component)

	GenericCHP (component)

	GenericStorage (component)

	ElectricalLine (custom)

	Link (custom)

	Using the investment mode

	Mixed Integer (Linear) Problems

	Adding additional constraints

	The Grouping module (Sets)

	Using the Excel (csv) reader

	Solph Examples

How can I use solph?

To use solph you have to install oemof and at least one solver, which can be used together with pyomo. See pyomo installation guide [https://software.sandia.gov/downloads/pub/pyomo/PyomoInstallGuide.html#Solvers].
You can test it by executing one of the existing examples. Be aware that the examples require the CBC solver but you can change the solver name in the example files to your solver.

Once the example work you are close to your first energy model.

Set up an energy system

In most cases an EnergySystem object is defined when we start to build up an energy system model. The EnergySystem object will be the main container for the model.

To define an EnergySystem we need a Datetime index to define the time range and increment of our model. An easy way to this is to use the pandas time_range function.
The following code example defines the year 2011 in hourly steps. See pandas date_range guide [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.date_range.html] for more information.

import pandas as pd
my_index = pd.date_range('1/1/2011', periods=8760, freq='H')

This index can be used to define the EnergySystem:

import oemof.solph as solph
my_energysystem = solph.EnergySystem(timeindex=my_index)

Now you can start to add the components of the network.

Add components to the energy system

After defining an instance of the EnergySystem class you have to add all nodes you define in the following to your EnergySystem.

Basically, there are two types of nodes - components and buses. Every Component has to be connected with one or more buses. The connection between a component and a bus is the flow.

All solph components can be used to set up an energy system model but you should read the documentation of each component to learn about usage and restrictions. For example it is not possible to combine every component with every flow. Furthermore, you can add your own components in your application (see below) but we would be pleased to integrate them into solph if they are of general interest. To do so please use the module oemof.solph.custom as described here: http://oemof.readthedocs.io/en/latest/developing_oemof.html#contribute-to-new-components

An example of a simple energy system shows the usage of the nodes for
real world representations:

[image: alternate text]

The figure shows a simple energy system using the four basic network classes and the Bus class.
If you remove the transmission line (transport 1 and transport 2) you get two systems but they are still one energy system in terms of solph and will be optimised at once.

There are different ways to add components to an energy system. The following line adds a bus object to the energy system defined above.

my_energysystem.add(solph.Bus())

It is also possible to assign the bus to a variable and add it afterwards. In that case it is easy to add as many objects as you like.

my_bus1 = solph.Bus()
my_bus2 = solph.Bus()
my_energysystem.add(bgas, bel)

Therefore it is also possible to add lists or dictionaries with components but you have to dissolve them.

add a list
my_energysystem.add(*my_list)

add a dictionary
my_energysystem.add(*my_dictionary.values())

Bus

All flows into and out of a bus are balanced. Therefore an instance of the Bus class represents a grid or network without losses. To define an instance of a Bus only a unique label is necessary. If you do not set a label a random label is used but this makes it difficult to get the results later on.

To make it easier to connect the bus to a component you can optionally assign a variable for later use.

solph.Bus(label='natural_gas')
electricity_bus = solph.Bus(label='electricity')

Note

See the Bus class for all parameters and the mathematical background.

Flow

The flow class has to be used to connect. An instance of the Flow class is normally used in combination with the definition of a component.
A Flow can be limited by upper and lower bounds (constant or time-dependent) or by summarised limits.
For all parameters see the API documentation of the Flow class or the examples of the nodes below. A basic flow can be defined without any parameter.

solph.Flow()

Oemof has different types of flows but you should be aware that you cannot connect every flow type with every component.

Note

See the Flow class for all parameters and the mathematical background.

Components

Components are divided in three categories. Basic components (solph.network), additional components (solph.components) and custom components (solph.custom). The custom section was created to lower the entry barrier for new components. Be aware that these components are in an experimental state. Let us know if you have used and tested these components. This is the first step to move them to the components section.

See Solph components for a list of all components.

Optimise your energy system

The typical optimisation of an energy system in solph is the dispatch optimisation, which means that the use of the sources is optimised to satisfy the demand at least costs.
Therefore, variable cost can be defined for all components. The cost for gas should be defined in the gas source while the variable costs of the gas power plant are caused by operating material.
You can deviate from this scheme but you should keep it consistent to make it understandable for others.

Costs do not have to be monetary costs but could be emissions or other variable units.

Furthermore, it is possible to optimise the capacity of different components (see Using the investment mode).

set up a simple least cost optimisation
om = solph.Model(my_energysystem)

solve the energy model using the CBC solver
om.solve(solver='cbc', solve_kwargs={'tee': True})

If you want to analyse the lp-file to see all equations and bounds you can write the file to you disc. In that case you should reduce the timesteps to 3. This will increase the readability of the file.

set up a simple least cost optimisation
om = solph.Model(my_energysystem)

write the lp file for debugging or other reasons
om.write('path/my_model.lp', io_options={'symbolic_solver_labels': True})

Analysing your results

If you want to analyse your results, you should first dump your EnergySystem instance, otherwise you have to run the simulation again.

my_energysystem.results = processing.results(om)
my_energysystem.dump('my_path', 'my_dump.oemof')

If you need the meta results of the solver you can do the following:

my_energysystem.results['main'] = processing.results(om)
my_energysystem.results['meta'] = processing.meta_results(om)
my_energysystem.dump('my_path', 'my_dump.oemof')

To restore the dump you can simply create an EnergySystem instance and restore your dump into it.

import oemof.solph as solph
my_energysystem = solph.EnergySystem()
my_energysystem.restore('my_path', 'my_dump.oemof')
results = my_energysystem.results

If you use meta results do the following instead of the previous line.
results = my_energysystem.results['main']
meta = my_energysystem.results['meta']

If you call dump/restore without any parameters, the dump will be stored as ‘es_dump.oemof’ into the ‘.oemof/dumps/’ folder created in your HOME directory.

See oemof-outputlib to learn how to process, plot and analyse the results.

Solph components

	Sink (basic)

	Source (basic)

	Transformer (basic)

	ExtractionTurbineCHP (component)

	GenericCAES (component)

	GenericCHP (component)

	GenericStorage (component)

	ElectricalLine (custom)

	Link (custom)

Sink (basic)

A sink is normally used to define the demand within an energy model but it can also be used to detect excesses.

The example shows the electricity demand of the electricity_bus defined above.
The ‘my_demand_series’ should be sequence of normalised values while the ‘nominal_value’ is the maximum demand the normalised sequence is multiplied with.
The parameter ‘fixed=True’ means that the actual_value can not be changed by the solver.

solph.Sink(label='electricity_demand', inputs={electricity_bus: solph.Flow(
 actual_value=my_demand_series, fixed=True, nominal_value=nominal_demand)})

In contrast to the demand sink the excess sink has normally less restrictions but is open to take the whole excess.

solph.Sink(label='electricity_excess', inputs={electricity_bus: solph.Flow()})

Note

The Sink class is only a plug and provides no additional constraints or variables.

Source (basic)

A source can represent a pv-system, a wind power plant, an import of natural gas or a slack variable to avoid creating an in-feasible model.

While a wind power plant will have an hourly feed-in depending on the weather conditions the natural_gas import might be restricted by maximum value (nominal_value) and an annual limit (summed_max).
As we do have to pay for imported gas we should set variable costs.
Comparable to the demand series an actual_value in combination with ‘fixed=True’ is used to define the normalised output of a wind power plan. The nominal_value sets the installed capacity.

solph.Source(
 label='import_natural_gas',
 outputs={my_energysystem.groups['natural_gas']: solph.Flow(
 nominal_value=1000, summed_max=1000000, variable_costs=50)})

solph.Source(label='wind', outputs={electricity_bus: solph.Flow(
 actual_value=wind_power_feedin_series, nominal_value=1000000, fixed=True)})

Note

The Source class is only a plug and provides no additional constraints or variables.

Transformer (basic)

An instance of the Transformer class can represent a node with multiple input and output flows such as a power plant, a transport line or any kind of a transforming process as electrolysis, a cooling device or a heat pump.
The efficiency has to be constant within one time step to get a linear transformation.
You can define a different efficiency for every time step (e.g. the thermal powerplant efficiency according to the ambient temperature) but this series has to be predefined and cannot be changed within the optimisation.

A condensing power plant can be defined by a transformer with one input (fuel) and one output (electricity).

b_gas = solph.Bus(label='natural_gas')
b_el = solph.Bus(label='electricity')

solph.Transformer(
 label="pp_gas",
 inputs={bgas: solph.Flow()},
 outputs={b_el: solph.Flow(nominal_value=10e10)},
 conversion_factors={electricity_bus: 0.58})

A CHP power plant would be defined in the same manner but with two outputs:

b_gas = solph.Bus(label='natural_gas')
b_el = solph.Bus(label='electricity')
b_th = solph.Bus(label='heat')

solph.Transformer(
 label='pp_chp',
 inputs={b_gas: Flow()},
 outputs={b_el: Flow(nominal_value=30),
 b_th: Flow(nominal_value=40)},
 conversion_factors={b_el: 0.3, b_th: 0.4})

A CHP power plant with 70% coal and 30% natural gas can be defined with two inputs and two outputs:

b_gas = solph.Bus(label='natural_gas')
b_coal = solph.Bus(label='hard_coal')
b_el = solph.Bus(label='electricity')
b_th = solph.Bus(label='heat')

solph.Transformer(
 label='pp_chp',
 inputs={b_gas: Flow(), b_coal: Flow()},
 outputs={b_el: Flow(nominal_value=30),
 b_th: Flow(nominal_value=40)},
 conversion_factors={b_el: 0.3, b_th: 0.4,
 b_coal: 0.7, b_gas: 0.3})

A heat pump would be defined in the same manner. New buses are defined to make the code cleaner:

b_el = solph.Bus(label='electricity')
b_th_low = solph.Bus(label='low_temp_heat')
b_th_high = solph.Bus(label='high_temp_heat')

The cop (coefficient of performance) of the heat pump can be defined as
a scalar or a sequence.
cop = 3

solph.Transformer(
 label='heat_pump',
 inputs={b_el: Flow(), b_th_low: Flow()},
 outputs={b_th_high: Flow()},
 conversion_factors={b_el: 1/cop,
 b_th_low: (cop-1)/cop})

If the low-temperature reservoir is nearly infinite (ambient air heat pump) the low temperature bus is not needed and, therefore, a Transformer with one input is sufficient.

Note

See the Transformer class for all parameters and the mathematical background.

ExtractionTurbineCHP (component)

The ExtractionTurbineCHP inherits from the
Transformer (basic) class. Like the name indicates,
the application example for the component is a flexible combined heat and power
(chp) plant. Of course, an instance of this class can represent also another
component with one input and two output flows and a flexible ratio between
these flows, leading to the following constraints:

[image: & \dot H_{Fuel} = \frac{P_{el} + \dot Q_{th} \cdot \beta} {\eta_{el,woExtr}} \\ & P_{el} \leq \dot Q_{th} \cdot \frac{\eta_{el,maxExtr}} {\eta_{th,maxExtr}}]

where [image: \beta] is defined as:

[image: \beta = \frac{\eta_{el,woExtr} - \eta_{el,maxExtr}}{\eta_{th,maxExtr}}]

where the first equation is the result of the relation between the input
flow and the two output flows, the second equation stems from how the two
output flows relate to each other, and the symbols used are defined as
follows:

	symbol

	explanation

	attribute

	[image: \dot H_{Fuel}]

	fuel input flow

	flow(inflow, n, t) is the flow from inflow
node to the node [image: n] at timestep [image: t]

	[image: P_{el}]

	electric power

	flow(n, main_output, t) is the flow from the
node [image: n] to the main_output node at timestep [image: t]

	[image: \dot Q_{th}]

	thermal output

	flow(n, tapped_output, t) is the flow from the
node [image: n] to the tapped_output node at timestep [image: t]

	[image: \beta]

	power loss index

	main_flow_loss_index at node [image: n] at timestep [image: t]
as defined above

	[image: \eta_{el,woExtr}]

	electric efficiency
without heat extraction

	conversion_factor_full_condensation at node [image: n]
at timestep [image: t]

	[image: \eta_{el,maxExtr}]

	electric efficiency
with max heat extraction

	conversion_factors for the main_output at
node [image: n] at timestep [image: t]

	[image: \eta_{th,maxExtr}]

	thermal efficiency with
maximal heat extraction

	conversion_factors for the tapped_output
at node [image: n] at timestep [image: t]

These constraints are applied in addition those of a standard
Transformer. The constraints limit the range of
the possible operation points, like the following picture shows. For a certain
flow of fuel, there is a line of operation points, whose slope is defined by
[image: \beta]. The second constrain limits the decrease of electrical power.

[image: variable_chp_plot.svg]

For now ExtractionTurbineCHP instances are
restricted to one input and two output flows. The class allows the definition
of a different efficiency for every time step but the corresponding series has
to be predefined as a parameter for the optimisation. In contrast to the
Transformer, a main flow and a tapped flow is
defined. For the main flow you can define a conversion factor if the second
flow is zero (conversion_factor_single_flow).

solph.ExtractionTurbineCHP(
 label='variable_chp_gas',
 inputs={b_gas: solph.Flow(nominal_value=10e10)},
 outputs={b_el: solph.Flow(), b_th: solph.Flow()},
 conversion_factors={b_el: 0.3, b_th: 0.5},
 conversion_factor_single_flow={b_el: 0.5})

The key of the parameter ‘conversion_factor_single_flow’ will indicate the
main flow. In the example above, the flow to the Bus ‘b_el’ is the main flow
and the flow to the Bus ‘b_th’ is the tapped flow. The following plot shows
how the variable chp (right) schedules it’s electrical and thermal power
production in contrast to a fixed chp (left). The plot is the output of an
example in the oemof example repository [https://github.com/oemof/oemof_examples].

[image: variable_chp_plot.svg]

Note

See the ExtractionTurbineCHP class for all parameters and the mathematical background.

GenericCAES (component)

Compressed Air Energy Storage (CAES).

Note

See the GenericCAES class for all parameters and the mathematical background.

GenericCHP (component)

With the GenericCHP class combined heat and power plants can be modelled with more details.

Note

See the GenericCHP class for all parameters and the mathematical background.

GenericStorage (component)

In contrast to the three classes above the storage class is a pure solph class and is not inherited from the oemof-network module.
The nominal_capacity of the storage signifies the storage capacity. You can either set it to the net capacity or to the gross capacity and limit it using the min/max attribute.
To limit the input and output flows, you can define the nominal_value in the Flow objects.
Furthermore, an efficiency for loading, unloading and a capacity loss per time increment can be defined. For more information see the definition of the GenericStorage class.

solph.GenericStorage(
 label='storage',
 inputs={b_el: solph.Flow(nominal_value=9, variable_costs=10)},
 outputs={b_el: solph.Flow(nominal_value=25, variable_costs=10)},
 capacity_loss=0.001, nominal_capacity=50,
 inflow_conversion_factor=0.98, outflow_conversion_factor=0.8)

Using an investment object with the GenericStorage component

Based on the GenericStorage object the GenericInvestmentStorageBlock adds two main investment possibilities.

	Invest into the flow parameters e.g. a turbine or a pump

	Invest into capacity of the storage e.g. a basin or a battery cell

Investment in this context refers to the value of the variable for the ‘nominal_value’ (installed capacity) in the investment mode.

As an addition to other flow-investments, the storage class implements the possibility to couple or decouple the flows
with the capacity of the storage.
Three parameters are responsible for connecting the flows and the capacity of the storage:

	‘ invest_relation_input_capacity ‘ fixes the input flow investment to the capacity investment. A ratio of ‘1’ means that the storage can be filled within one time-period.

	‘ invest_relation_output_capacity ‘ fixes the output flow investment to the capacity investment. A ratio of ‘1’ means that the storage can be emptied within one period.

	‘ invest_relation_input_output ‘ fixes the input flow investment to the output flow investment. For values <1, the input will be smaller and for values >1 the input flow will be larger.

You should not set all 3 parameters at the same time, since it will lead to overdetermination.

The following example pictures a Pumped Hydroelectric Energy Storage (PHES). Both flows and the storage itself (representing: pump, turbine, basin) are free in their investment. You can set the parameters to None or delete them as None is the default value.

solph.GenericStorage(
 label='PHES',
 inputs={b_el: solph.Flow(investment= solph.Investment(ep_costs=500))},
 outputs={b_el: solph.Flow(investment= solph.Investment(ep_costs=500)},
 capacity_loss=0.001,
 inflow_conversion_factor=0.98, outflow_conversion_factor=0.8),
 investment = solph.Investment(ep_costs=40))

The following example describes a battery with flows coupled to the capacity of the storage.

solph.GenericStorage(
 label='battery',
 inputs={b_el: solph.Flow()},
 outputs={b_el: solph.Flow()},
 capacity_loss=0.001,
 nominal_capacity=50,
 inflow_conversion_factor=0.98,
 outflow_conversion_factor=0.8,
 invest_relation_input_capacity = 1/6,
 invest_relation_output_capacity = 1/6,
 investment = solph.Investment(ep_costs=400))

Note

See the GenericStorage class for all parameters and the mathematical background.

ElectricalLine (custom)

Electrical line.

Note

See the ElectricalLine class for all parameters and the mathematical background.

Link (custom)

Link.

Note

See the Link class for all parameters and the mathematical background.

Using the investment mode

As described in Optimise your energy system the typical way to optimise an energy system is the dispatch optimisation based on marginal costs. Solph also provides a combined dispatch and investment optimisation.
Based on investment costs you can compare the usage of existing components against building up new capacity.
The annual savings by building up new capacity must therefore compensate the annuity of the investment costs (the time period does not have to be one year but depends on your Datetime index).

See the API of the Investment class to see all possible parameters.

Basically an instance of the investment class can be added to a Flow or a
Storage. All parameters that usually refer to the nominal_value/capacity will
now refer to the investment variables and existing capacity. It is also
possible to set a maximum limit for the capacity that can be build.
If existing capacity is considered for a component with investment mode enabled,
the ep_costs still apply only to the newly built capacity.

The investment object can be used in Flows and some components. See the
Solph components section for detailed information of each
component.

For example if you want to find out what would be the optimal capacity of a wind
power plant to decrease the costs of an existing energy system, you can define
this model and add an investment source.
The wind_power_time_series has to be a normalised feed-in time series of you
wind power plant. The maximum value might be caused by limited space for wind
turbines.

solph.Source(label='new_wind_pp', outputs={electricity: solph.Flow(
 actual_value=wind_power_time_series, fixed=True,
 investment=solph.Investment(ep_costs=epc, maximum=50000))})

Let’s slightly alter the case and consider for already existing wind power
capacity of 20,000 kW. We’re still expecting the total wind power capacity, thus we
allow for 30,000 kW of new installations and formulate as follows.

solph.Source(label='new_wind_pp', outputs={electricity: solph.Flow(
 actual_value=wind_power_time_series, fixed=True,
 investment=solph.Investment(ep_costs=epc,
 maximum=30000,
 existing=20000))})

The periodical costs (ep_costs) are typically calculated as follows:

capex = 1000 # investment cost
lifetime = 20 # life expectancy
wacc = 0.05 # weighted average of capital cost
epc = capex * (wacc * (1 + wacc) ** lifetime) / ((1 + wacc) ** lifetime - 1)

This also implemented in annuity(). The code above
would look like this:

from oemof.tools import economics
epc = economics.annuity(1000, 20, 0.05)

Note

At the moment the investment class is not compatible with the MIP classes NonConvex.

Mixed Integer (Linear) Problems

Solph also allows you to model components with respect to more technical details
such as a minimal power production. Therefore, the class
NonConvex exists in the
options module.
Note that the usage of this class is currently not compatible with the
Investment class.

If you want to use the functionality of the options-module, the only thing
you have to do is to invoke a class instance inside your Flow() - declaration:

b_gas = solph.Bus(label='natural_gas')
b_el = solph.Bus(label='electricity')
b_th = solph.Bus(label='heat')

solph.Transformer(
 label='pp_chp',
 inputs={b_gas: Flow()},
 outputs={b_el: Flow(nominal_value=30,
 nonconvex=NonConvex()),
 b_th: Flow(nominal_value=40)},
 conversion_factors={b_el: 0.3, b_th: 0.4})

The NonConvex() object of the electrical output of the created LinearTransformer will create
a ‘status’ variable for the flow.
This will be used to model for example minimal/maximal power production constraints if the
attributes min/max of the flow are set. It will also be used to include start up constraints and costs
if corresponding attributes of the class are provided. For more
information see the API of the NonConvex class and its corresponding
block class NonConvex.

Note

The usage of this class can sometimes be tricky as there are many interdenpendencies. So
check out the examples and do not hesitate to ask the developers if your model does
not work as expected.

Adding additional constraints

You can add additional constraints to your Model. See flexible_modelling in the example repository [https://github.com/oemof/oemof_examples/blob/master/examples/oemof_0.2/flexible_modelling/add_constraints.py] to learn how to do it.

Some predefined additional constraints can be found in the
constraints module.

	Emission limit for the model -> emission_limit()

	Coupling of two variables e.g. investment variables) with a factor ->
equate_variables()

	Overall investment limit -> investment_limit()

The Grouping module (Sets)

To construct constraints,
variables and objective expressions inside the blocks
and the models modules, so called groups are used. Consequently,
certain constraints are created for all elements of a specific group. Thus,
mathematically the groups depict sets of elements inside the model.

The grouping is handled by the solph grouping module groupings
which is based on the oemof core groupings functionality. You
do not need to understand how the underlying functionality works. Instead, checkout
how the solph grouping module is used to create groups.

The simplest form is a function that looks at every node of the energy system and
returns a key for the group depending e.g. on node attributes:

 def constraint_grouping(node):
 if isinstance(node, Bus) and node.balanced:
 return blocks.Bus
 if isinstance(node, Transformer):
 return blocks.Transformer
GROUPINGS = [constraint_grouping]

This function can be passed in a list to groupings of
oemof.solph.network.EnergySystem. So that we end up with two groups,
one with all Transformers and one with all Buses that are balanced. These
groups are simply stored in a dictionary. There are some advanced functionalities
to group two connected nodes with their connecting flow and others
(see for example: FlowsWithNodes).

Using the Excel (csv) reader

Alternatively to a manual creation of energy system component objects as describe above, can also be created from a excel sheet (libreoffice, gnumeric…).

The idea is to create different sheets within one spreadsheet file for different components. Afterwards you can loop over the rows with the attributes in the columns. The name of the columns may differ from the name of the attribute. You may even create two sheets for the GenericStorage class with attributes such as C-rate for batteries or capacity of turbine for a PHES.

Once you have create your specific excel reader you can lower the entry barrier for other users. It is some sort of a GUI in form of platform independent spreadsheet software and to make data and models exchangeable in one archive.

See the example repository [https://github.com/oemof/oemof_examples] for an excel reader example.

Solph Examples

See the example repository [https://github.com/oemof/oemof_examples] for various examples. The repository has sections for each major release.

oemof-outputlib

For version 0.2.0, the outputlib has been refactored. Tools for plotting optimization
results that were part of the outputlib in earlier versions are no longer part of this module
as the requirements to plotting functions greatly depend on individial requirements.

Basic functions for plotting of optimisation results are now found in
a separate repository oemof_visio [https://github.com/oemof/oemof_visio].

	Collecting results

The main purpose of the outputlib is to collect and organise results.
It gives back the results as a python dictionary holding pandas Series for scalar values and pandas DataFrames for all nodes and flows between them. This way we can make use of the full power of the pandas package available to process the results.

See the pandas documentation [http://pandas.pydata.org/pandas-docs/stable/] to learn how to visualise [http://pandas.pydata.org/pandas-docs/version/0.18.1/visualization.html], read or write [http://pandas.pydata.org/pandas-docs/stable/io.html] or how to access parts of the DataFrame [http://pandas.pydata.org/pandas-docs/stable/advanced.html] to process them.

Collecting results

Collecting results can be done with the help of the processing module:

results = outputlib.processing.results(om)

The scalars and sequences describe nodes (with keys like (node, None)) and flows between nodes (with keys like (node_1, node_2)). You can directly extract the data in the dictionary by using these keys, where “node” is the name of the object you want to address. If you want to address objects by their label, you can convert the results dictionary such that the keys are changed to strings given by the labels:

views.convert_keys_to_strings(results)
print(results[('wind', 'bus_electricity')]['sequences']

Another option is to access data belonging to a grouping by the name of the grouping
(note also this section on groupings [http://oemof.readthedocs.io/en/latest/oemof_solph.html#the-grouping-module-sets].
Given the label of an object, e.g. ‘wind’ you can access the grouping by its label
and use this to extract data from the results dictionary.

node_wind = energysystem.groups['wind']
print(results[(node_wind, bus_electricity)])

However, in many situations it might be convenient to use the views module to
collect information on a specific node. You can request all data related to a
specific node by using either the node’s variable name or its label:

data_wind = outputlib.views.node(results, 'wind')

A function for collecting and printing meta results, i.e. information on the objective function,
the problem and the solver, is provided as well:

meta_results = outputlib.processing.meta_results(om)
pp.pprint(meta_results)

oemof-tools

The oemof tools package contains little helpers to create your own application. You can use a configuration file in the ini-format to define computer specific parameters such as paths, addresses etc.. Furthermore a logging module helps you creating log files for your application.

List of oemof tools

	Economics

	Helpers

	Logger

Economics

Calculate the annuity. See the API-doc of annuity() for all details.

Helpers

Excess oemof’s default path. See the API-doc of helpers for all details.

Logger

The main purpose of this function is to provide a logger with well set default values but with the opportunity to change the most important parameters if you know what you want after a while. This is what most new users (or users who do not want to care about loggers) need.
If you are an advanced user with your own ideas it might be easier to copy the whole function to your application and adapt it to your own wishes.

define_logging(logpath=None, logfile='oemof.log', file_format=None,
 screen_format=None, file_datefmt=None, screen_datefmt=None,
 screen_level=logging.INFO, file_level=logging.DEBUG,
 log_version=True, log_path=True, timed_rotating=None):

By default down to INFO all messages are written on the screen and down to DEBUG all messages are written in the file. The file is placed in $HOME/.oemof/log_files as oemof.log. But you can easily pass your own path and your own filename. You can also change the logging level (screen/file) by changing the screen_level or the file_level to logging.DEBUG, logging.INFO, logging.WARNING…. . You can stop the logger from logging the oemof version or commit with log_version=False and the path of the file with log_path=False. Furthermore, you can change the format on the screen and in the file according to the python logging documentation. You can also change the used time format according to this documentation.

file_format = "%(asctime)s - %(levelname)s - %(module)s - %(message)s"
file_datefmt = "%x - %X"
screen_format = "%(asctime)s-%(levelname)s-%(message)s"
screen_datefmt = "%H:%M:%S"

You can also change the behaviour of the file handling (TimedRotatingFileHandler) by passing a dictionary with your own options (timed_rotating).

See the API-doc of define_logging() for all details.

API

	oemof

	oemof package

	oemof.outputlib package

	oemof.solph package

	oemof.tools package

oemof

	oemof package
	Subpackages
	oemof.outputlib package
	Submodules

	oemof.outputlib.processing module

	oemof.outputlib.views module

	Module contents

	oemof.solph package
	Submodules

	oemof.solph.blocks module

	oemof.solph.components module

	oemof.solph.constraints module

	oemof.solph.custom module

	oemof.solph.groupings module

	oemof.solph.models module

	oemof.solph.network module

	oemof.solph.options module

	oemof.solph.plumbing module

	Module contents

	oemof.tools package
	Submodules

	oemof.tools.console_scripts module

	oemof.tools.datapackage module

	oemof.tools.economics module

	oemof.tools.helpers module

	oemof.tools.logger module

	Module contents

	Submodules

	oemof.energy_system module

	oemof.graph module

	oemof.groupings module

	oemof.network module

	Module contents

oemof package

Subpackages

	oemof.outputlib package
	Submodules

	oemof.outputlib.processing module

	oemof.outputlib.views module

	Module contents

	oemof.solph package
	Submodules

	oemof.solph.blocks module

	oemof.solph.components module

	oemof.solph.constraints module

	oemof.solph.custom module

	oemof.solph.groupings module

	oemof.solph.models module

	oemof.solph.network module

	oemof.solph.options module

	oemof.solph.plumbing module

	Module contents

	oemof.tools package
	Submodules

	oemof.tools.console_scripts module

	oemof.tools.datapackage module

	oemof.tools.economics module

	oemof.tools.helpers module

	oemof.tools.logger module

	Module contents

Submodules

oemof.energy_system module

Basic EnergySystem class

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/energy_system.py

SPDX-License-Identifier: GPL-3.0-or-later

	
class oemof.energy_system.EnergySystem(**kwargs)[source]

	Bases: object

Defining an energy supply system to use oemof’s solver libraries.

Note

The list of regions is not necessary to use the energy system with solph.

	Parameters

	
	entities (list of Entity, optional) – A list containing the already existing Entities that should be part of the energy system.
Stored in the entities attribute.
Defaults to [] if not supplied.

	timeindex (pandas.datetimeindex) – Define the time range and increment for the energy system.

	groupings (list) – The elements of this list are used to construct Groupings or they are used directly if they
are instances of Grouping.
These groupings are then used to aggregate the entities added to this
energy system into groups.
By default, there’ll always be one group for each uid containing exactly the entity with the
given uid.
See the examples for more information.

	
entities

	A list containing the Entities
that comprise the energy system. If this EnergySystem is
set as the registry
attribute, which is done automatically on EnergySystem
construction, newly created Entities are automatically added to this list on
construction.

	Type

	list of Entity

	
groups

	
	Type

	dict

	
results

	A dictionary holding the results produced by the energy system.
Is None while no results are produced.
Currently only set after a call to optimize() after which it
holds the return value of om.results().
See the documentation of that method for a detailed description of the
structure of the results dictionary.

	Type

	dictionary

	
timeindex

	Define the time range and increment for the energy system. This is an
optional attribute but might be import for other functions/methods that
use the EnergySystem class as an input parameter.

	Type

	pandas.index, optional

Examples

Regardles of additional groupings, entities will always be grouped by their uid:

>>> from oemof.network import Entity
>>> from oemof.network import Bus, Sink
>>> es = EnergySystem()
>>> bus = Bus(label='electricity')
>>> es.add(bus)
>>> bus is es.groups['electricity']
True

For simple user defined groupings, you can just supply a function that
computes a key from an entity and the
resulting groups will be sets of entities stored under the returned keys, like in this
example, where entities are grouped by
their type:

>>> es = EnergySystem(groupings=[type])
>>> buses = set(Bus(label="Bus {}".format(i)) for i in range(9))
>>> es.add(*buses)
>>> components = set(Sink(label="Component {}".format(i))
... for i in range(9))
>>> es.add(*components)
>>> buses == es.groups[Bus]
True
>>> components == es.groups[Sink]
True

	
add(*nodes)[source]

	Add nodes to this energy system.

	
dump(dpath=None, filename=None)[source]

	Dump an EnergySystem instance.

	
flows()[source]

	

	
classmethod from_datapackage(*args, **kwargs)[source]

	

	
groups

	

	
nodes

	

	
restore(dpath=None, filename=None)[source]

	Restore an EnergySystem instance.

oemof.graph module

Modules for creating and analysing energy system graphs.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/graph.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.graph.create_nx_graph(energy_system=None, optimization_model=None, remove_nodes=None, filename=None, remove_nodes_with_substrings=None, remove_edges=None)[source]

	Create a networkx.DiGraph for the passed energy system and plot it.
See http://networkx.readthedocs.io/en/latest/ for more information.

	Parameters

	
	energy_system (oemof.solph.network.EnergySystem) –

	filename (str) – Absolute filename (with path) to write your graph in the graphml
format. If no filename is given no file will be written.

	remove_nodes (list of strings) – Nodes to be removed e.g. [‘node1’, node2’)]

	remove_nodes_with_substrings (list of strings) – Nodes that contain substrings to be removed e.g. [‘elec’, ‘heat’)]

	remove_edges (list of string tuples) – Edges to be removed e.g. [(‘resource_gas’, ‘gas_balance’)]

Examples

>>> import os
>>> import pandas as pd
>>> from oemof.solph import (Bus, Sink, Transformer, Flow, EnergySystem)
>>> import oemof.graph as grph
>>> datetimeindex = pd.date_range('1/1/2017', periods=3, freq='H')
>>> es = EnergySystem(timeindex=datetimeindex)
>>> b_gas = Bus(label='b_gas', balanced=False)
>>> bel1 = Bus(label='bel1')
>>> bel2 = Bus(label='bel2')
>>> demand_el = Sink(label='demand_el',
... inputs = {bel1: Flow(nominal_value=85,
... actual_value=[0.5, 0.25, 0.75],
... fixed=True)})
>>> pp_gas = Transformer(label='pp_gas',
... inputs={b_gas: Flow()},
... outputs={bel1: Flow(nominal_value=41,
... variable_costs=40)},
... conversion_factors={bel1: 0.5})
>>> line_to2 = Transformer(label='line_to2',
... inputs={bel1: Flow()}, outputs={bel2: Flow()})
>>> line_from2 = Transformer(label='line_from2',
... inputs={bel2: Flow()}, outputs={bel1: Flow()})
>>> es.add(b_gas, bel1, demand_el, pp_gas, bel2, line_to2, line_from2)
>>> my_graph = grph.create_nx_graph(es)
>>> # export graph as .graphml for programs like Yed where it can be
>>> # sorted and customized. this is especially helpful for large graphs
>>> # grph.create_nx_graph(es, filename="my_graph.graphml")
>>> [my_graph.has_node(n)
... for n in ['b_gas', 'bel1', 'pp_gas', 'demand_el', 'tester']]
[True, True, True, True, False]
>>> list(nx.attracting_components(my_graph))
[{'demand_el'}]
>>> sorted(list(nx.strongly_connected_components(my_graph))[1])
['bel1', 'bel2', 'line_from2', 'line_to2']
>>> new_graph = grph.create_nx_graph(energy_system=es,
... remove_nodes_with_substrings=['b_'],
... remove_nodes=['pp_gas'],
... remove_edges=[('bel2', 'line_from2')],
... filename='test_graph')
>>> [new_graph.has_node(n)
... for n in ['b_gas', 'bel1', 'pp_gas', 'demand_el', 'tester']]
[False, True, False, True, False]
>>> my_graph.has_edge('pp_gas', 'bel1')
True
>>> new_graph.has_edge('bel2', 'line_from2')
False
>>> os.remove('test_graph.graphml')

Notes

Needs graphviz and networkx (>= v.1.11) to work properly.
Tested on Ubuntu 16.04 x64 and solydxk (debian 9).

oemof.groupings module

All you need to create groups of stuff in your energy system.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/groupings.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.groupings.DEFAULT = <oemof.groupings.Grouping object>

	The default Grouping.

This one is always present in an energy system. It stores every entity under its uid and raises an error if another entity with the same uid get’s added to the energy system.

	
class oemof.groupings.Flows(key=None, constant_key=None, filter=None, **kwargs)[source]

	Bases: oemof.groupings.Nodes

Specialises Grouping to group the flows connected to nodes into sets.
Note that this specifically means that the key, and
value functions act on a set of flows.

	
value(flows)[source]

	Returns a set containing only flows, so groups are
sets of flows.

	
class oemof.groupings.FlowsWithNodes(key=None, constant_key=None, filter=None, **kwargs)[source]

	Bases: oemof.groupings.Nodes

Specialises Grouping to act on the flows connected to
nodes and create sets of
(source, target, flow) tuples.
Note that this specifically means that the key, and
value functions act on sets like these.

	
value(tuples)[source]

	Returns a set containing only tuples, so groups are
sets of tuples.

	
class oemof.groupings.Grouping(key=None, constant_key=None, filter=None, **kwargs)[source]

	Bases: object

Used to aggregate entities in an
energy system into
groups.

The way Groupings work is that each Grouping
g of an energy system is called whenever an entity is added to the energy system (and for each
entity already present, if the energy
system is created with existing enties).
The call g(e, groups), where e is an entity and groups is a dictionary mapping
group keys to groups, then uses the three functions key, value and merge in the following way:

	key(e) is called to obtain a key k
under which the group should be stored,

	value(e) is called to obtain a value
v (the actual group) to store under k,

	if you supplied a filter() argument, v is
filtered using that function,

	otherwise, if there is not yet anything stored under
groups[k], groups[k] is set to v. Otherwise
merge is used to figure out how to merge
v into the old value of groups[k], i.e.
groups[k] is set to merge(v, groups[k]).

Instead of trying to use this class directly, have a look at its
subclasses, like Nodes, which should cater for most use cases.

Notes

When overriding methods using any of the constructor parameters, you don’t
have access to self in the corresponding function. If you need
access to self, subclass Grouping and override the methods
in the subclass.

A Grouping may be called more than once on the same object
e, so one should make sure that user defined Grouping
g is idempotent, i.e. g(e, g(e, d)) == g(e, d).

	Parameters

	
	key (callable or hashable) – Specifies (if not callable) or extracts (if callable) a key for each entity of
the energy system.

	constant_key (hashable (optional)) – Specifies a constant key. Keys specified using
this parameter are not called but taken as is.

	value (callable, optional) – Overrides the default behaviour of value.

	filter (callable, optional) – If supplied, whatever is returned by value() is filtered through this. Mostly useful in conjunction with
static (i.e. non-callable) keys.
See filter() for more details.

	merge (callable, optional) – Overrides the default behaviour of merge.

	
filter(group)[source]

	Filter the group returned by value()
before storing it.

Should return a boolean value. If the group returned by
value() is iterable, this
function is used (via Python’s builtin filter) to select the values which should be retained in
group. If group is not iterable, it is simply called on group itself
and the return value decides whether group is stored
(True) or not (False).

	
key(e)[source]

	Obtain a key under which to store the group.

You have to supply this method yourself using the key parameter
when creating Grouping instances.

Called for every entity e
of the energy system. Expected to return the key (i.e. a valid
hashable) under which the group value(e) will be stored. If it should be added to more than
one group, return a list (or any other non-hashable, iterable) containing the group keys.

Return None if you don’t want to store e in a group.

	
merge(new, old)[source]

	Merge a known old group with a new one.

This method is called if there is already a value stored under
group[key(e)]. In that case, merge(value(e),
group[key(e)]) is called and should return the new
group to store under key(e).

The default behaviour is to raise an error if new and old
are not identical.

	
value(e)[source]

	Generate the group obtained from e.

This methd returns the actual group obtained from e. Like
key, it is called for every e in the
energy system. If there is no group stored under key(e), groups[key(e)] is set to value(e). Otherwise merge(value(e), groups[key(e)]) is called.

The default returns the entity
itself.

	
class oemof.groupings.Nodes(key=None, constant_key=None, filter=None, **kwargs)[source]

	Bases: oemof.groupings.Grouping

Specialises Grouping to group nodes
into sets.

	
merge(new, old)[source]

	Updates old to be the union of old
and new.

	
value(e)[source]

	Returns a set containing only e, so groups are
sets of node.

oemof.network module

This package (along with its subpackages) contains the classes used to model
energy systems. An energy system is modelled as a graph/network of entities
with very specific constraints on which types of entities are allowed to be
connected.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/network.py

SPDX-License-Identifier: GPL-3.0-or-later

	
class oemof.network.Bus(*args, **kwargs)[source]

	Bases: oemof.network.Node

	
class oemof.network.Component(*args, **kwargs)[source]

	Bases: oemof.network.Node

	
class oemof.network.Entity(**kwargs)[source]

	Bases: object

The most abstract type of vertex in an energy system graph. Since each
entity in an energy system has to be uniquely identifiable and
connected (either via input or via output) to at least one other
entity, these properties are collected here so that they are shared
with descendant classes.

	Parameters

	
	uid (string or tuple) – Unique component identifier of the entity.

	inputs (list) – List of Entities acting as input to this Entity.

	outputs (list) – List of Entities acting as output from this Entity.

	geo_data (shapely.geometry object) – Geo-spatial data with informations for location/region-shape. The
geometry can be a polygon/multi-polygon for regions, a line fore
transport objects or a point for objects such as transformer sources.

	
registry

	The central registry keeping track of all Node's
created. If this is None, Node instances are not
kept track of. Assign an EnergySystem to this attribute to have it
become the a node registry, i.e. all nodes created are added to its nodes
property on construction.

	Type

	EnergySystem

	
add_regions(regions)[source]

	Add regions to self.regions

	
optimization_options = {}

	

	
registry = None

	

	
class oemof.network.Inputs(flows, target)[source]

	Bases: collections.abc.MutableMapping

A special helper to map n1.inputs[n2] to n2.outputs[n1].

	
class oemof.network.Node(*args, **kwargs)[source]

	Bases: object

Represents a Node in an energy system graph.

Abstract superclass of the two general types of nodes of an energy system
graph, collecting attributes and operations common to all types of nodes.
Users should neither instantiate nor subclass this, but use
Component, Bus or one of their subclasses instead.

	Parameters

	
	label (hashable, optional) – Used as the string representation of this node. If this parameter is
not an instance of str it will be converted to a string and
the result will be used as this node’s label, which should be
unique with respect to the other nodes in the energy system graph this
node belongs to. If this parameter is not supplied, the string
representation of this node will instead be generated based on this
nodes class and id.

	inputs (list or dict, optional) – Either a list of this nodes’ input nodes or a dictionary mapping input
nodes to corresponding inflows (i.e. input values).

	outputs (list or dict, optional) – Either a list of this nodes’ output nodes or a dictionary mapping
output nodes to corresponding outflows (i.e. output values).

	flow (function, optional) – A function taking this node and a target node as a parameter (i.e.
something of the form def f(self, target)), returning the
flow originating from this node into target.

	
__slots__

	See the Python documentation on __slots__ [https://docs.python.org/3/reference/datamodel.html#slots] for more
information.

	Type

	str or iterable of str

	
inputs

	Dictionary mapping input Nodes n to flows from
n into self.

	Type

	dict

	
label

	If this node was given a label on construction, this
attribute holds the actual object passed as a parameter. Otherwise
node.label is a synonym for str(node).

	Type

	object

	
outputs

	Dictionary mapping output Nodes n to flows from
self into n.

	Type

	dict

	
registry = None

	

	
class oemof.network.Outputs(flows, source)[source]

	Bases: collections.abc.MutableMapping

Helper that intercepts modifications to update Inputs symmetrically.

	
class oemof.network.Sink(*args, **kwargs)[source]

	Bases: oemof.network.Component

	
class oemof.network.Source(*args, **kwargs)[source]

	Bases: oemof.network.Component

	
class oemof.network.Transformer(*args, **kwargs)[source]

	Bases: oemof.network.Component

	
oemof.network.registry_changed_to(r)[source]

	Override registry during execution of a block and restore it afterwards.

	
oemof.network.temporarily_modifies_registry(function)[source]

	Backup registry before and restore it after execution of function.

Module contents

oemof.outputlib package

Submodules

oemof.outputlib.processing module

oemof.outputlib.views module

Module contents

oemof.solph package

Submodules

oemof.solph.blocks module

oemof.solph.components module

oemof.solph.constraints module

oemof.solph.custom module

oemof.solph.groupings module

oemof.solph.models module

oemof.solph.network module

oemof.solph.options module

oemof.solph.plumbing module

Plumbing stuff.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/solph/plumbing.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.solph.plumbing.sequence(sequence_or_scalar)

	Tests if an object is sequence (except string) or scalar and returns
a the original sequence if object is a sequence and a ‘emulated’ sequence
object of class _Sequence if object is a scalar or string.

	Parameters

	sequence_or_scalar (array-like, None, int, float) –

Examples

>>> sequence([1,2])
[1, 2]

>>> x = sequence(10)
>>> x[0]
10

>>> x[10]
10
>>> print(x)
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

Module contents

oemof.tools package

Submodules

oemof.tools.console_scripts module

oemof.tools.datapackage module

oemof.tools.economics module

Module to collect useful functions for economic calculation.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/economics.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.tools.economics.annuity(capex, n, wacc)

	Calculate the annuity.

annuity = capex * (wacc * (1 + wacc) ** n) / ((1 + wacc) ** n - 1)

	Parameters

	
	capex (float) – Capital expenditure (NPV of investment)

	n (int) – Number of years that the investment is used (economic lifetime)

	wacc (float) – Weighted average cost of capital

	Returns

	float

	Return type

	annuity

oemof.tools.helpers module

This is a collection of helper functions which work on their own and can be
used by various classes. If there are too many helper-functions, they will
be sorted in different modules.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/helpers.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.tools.helpers.extend_basic_path(subfolder)

	Returns a path based on the basic oemof path and creates it if
necessary. The subfolder is the name of the path extension.

	
oemof.tools.helpers.flatten(d, parent_key='', sep='_')

	Flatten dictionary by compressing keys.

	See: https://stackoverflow.com/questions/6027558/

	flatten-nested-python-dictionaries-compressing-keys

d : dictionary
sep : separator for flattening keys

	Returns

	

	Return type

	dict

	
oemof.tools.helpers.get_basic_path()

	Returns the basic oemof path and creates it if necessary.
The basic path is the ‘.oemof’ folder in the $HOME directory.

oemof.tools.logger module

Helpers to log your modeling process with oemof.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/logger.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.tools.logger.check_git_branch()

	Passes the used branch and commit to the logger

>>> from oemof.tools import logger
>>> try:
... v = logger.check_git_branch()
... except FileNotFoundError:
... v = ('abcdefgh', 'branch')
>>> type(v)
<class 'tuple'>
>>> type(v[0])
<class 'str'>
>>> len(v[0])
8

	
oemof.tools.logger.check_version()

	Returns the actual version number of the used oemof version.

>>> from oemof.tools import logger
>>> v = logger.check_version()
>>> int(v.split('.')[0])
0

	
oemof.tools.logger.define_logging(logpath=None, logfile='oemof.log', file_format=None, screen_format=None, file_datefmt=None, screen_datefmt=None, screen_level=20, file_level=10, log_version=True, log_path=True, timed_rotating=None)

	Initialise customisable logger.

	Parameters

	
	logfile (str) – Name of the log file, default: oemof.log

	logpath (str) – The path for log files. By default a “.oemof’ folder is created in your
home directory with subfolder called ‘log_files’.

	file_format (str) – Format of the file output.
Default: “%(asctime)s - %(levelname)s - %(module)s - %(message)s”

	screen_format (str) – Format of the screen output.
Default: “%(asctime)s-%(levelname)s-%(message)s”

	file_datefmt (str) – Format of the datetime in the file output. Default: None

	screen_datefmt (str) – Format of the datetime in the screen output. Default: “%H:%M:%S”

	screen_level (int) – Level of logging to stdout. Default: 20 (logging.INFO)

	file_level (int) – Level of logging to file. Default: 10 (logging.DEBUG)

	log_version (boolean) – If True the actual version or commit is logged while initialising the
logger.

	log_path (boolean) – If True the used file path is logged while initialising the logger.

	timed_rotating (dict) – Option to pass parameters to the TimedRotatingFileHandler.

	Returns

	str

	Return type

	Place where the log file is stored.

Notes

By default the INFO level is printed on the screen and the DEBUG level
in a file, but you can easily configure the logger.
Every module that wants to create logging messages has to import the
logging module. The oemof logger module has to be imported once to
initialise it.

Examples

To define the default logger you have to import the python logging
library and this function. The first logging message should be the
path where the log file is saved to.

>>> import logging
>>> from oemof.tools import logger
>>> mypath = logger.define_logging(
... log_path=True, log_version=True, timed_rotating={'backupCount': 4},
... screen_level=logging.ERROR, screen_datefmt = "no_date")
>>> mypath[-9:]
'oemof.log'
>>> logging.debug("Hallo")

	
oemof.tools.logger.get_version()

	Returns a string part of the used version. If the commit and the branch
is available the commit and the branch will be returned otherwise the
version number.

>>> from oemof.tools import logger
>>> v = logger.get_version()
>>> type(v)
<class 'str'>

Module contents

oemof package

Subpackages

	oemof.outputlib package
	Submodules

	oemof.outputlib.processing module

	oemof.outputlib.views module

	Module contents

	oemof.solph package
	Submodules

	oemof.solph.blocks module

	oemof.solph.components module

	oemof.solph.constraints module

	oemof.solph.custom module

	oemof.solph.groupings module

	oemof.solph.models module

	oemof.solph.network module

	oemof.solph.options module

	oemof.solph.plumbing module

	Module contents

	oemof.tools package
	Submodules

	oemof.tools.console_scripts module

	oemof.tools.datapackage module

	oemof.tools.economics module

	oemof.tools.helpers module

	oemof.tools.logger module

	Module contents

Submodules

oemof.energy_system module

Basic EnergySystem class

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/energy_system.py

SPDX-License-Identifier: GPL-3.0-or-later

	
class oemof.energy_system.EnergySystem(**kwargs)[source]

	Bases: object

Defining an energy supply system to use oemof’s solver libraries.

Note

The list of regions is not necessary to use the energy system with solph.

	Parameters

	
	entities (list of Entity, optional) – A list containing the already existing Entities that should be part of the energy system.
Stored in the entities attribute.
Defaults to [] if not supplied.

	timeindex (pandas.datetimeindex) – Define the time range and increment for the energy system.

	groupings (list) – The elements of this list are used to construct Groupings or they are used directly if they
are instances of Grouping.
These groupings are then used to aggregate the entities added to this
energy system into groups.
By default, there’ll always be one group for each uid containing exactly the entity with the
given uid.
See the examples for more information.

	
entities

	A list containing the Entities
that comprise the energy system. If this EnergySystem is
set as the registry
attribute, which is done automatically on EnergySystem
construction, newly created Entities are automatically added to this list on
construction.

	Type

	list of Entity

	
groups

	
	Type

	dict

	
results

	A dictionary holding the results produced by the energy system.
Is None while no results are produced.
Currently only set after a call to optimize() after which it
holds the return value of om.results().
See the documentation of that method for a detailed description of the
structure of the results dictionary.

	Type

	dictionary

	
timeindex

	Define the time range and increment for the energy system. This is an
optional attribute but might be import for other functions/methods that
use the EnergySystem class as an input parameter.

	Type

	pandas.index, optional

Examples

Regardles of additional groupings, entities will always be grouped by their uid:

>>> from oemof.network import Entity
>>> from oemof.network import Bus, Sink
>>> es = EnergySystem()
>>> bus = Bus(label='electricity')
>>> es.add(bus)
>>> bus is es.groups['electricity']
True

For simple user defined groupings, you can just supply a function that
computes a key from an entity and the
resulting groups will be sets of entities stored under the returned keys, like in this
example, where entities are grouped by
their type:

>>> es = EnergySystem(groupings=[type])
>>> buses = set(Bus(label="Bus {}".format(i)) for i in range(9))
>>> es.add(*buses)
>>> components = set(Sink(label="Component {}".format(i))
... for i in range(9))
>>> es.add(*components)
>>> buses == es.groups[Bus]
True
>>> components == es.groups[Sink]
True

	
add(*nodes)[source]

	Add nodes to this energy system.

	
dump(dpath=None, filename=None)[source]

	Dump an EnergySystem instance.

	
flows()[source]

	

	
classmethod from_datapackage(*args, **kwargs)[source]

	

	
groups

	

	
nodes

	

	
restore(dpath=None, filename=None)[source]

	Restore an EnergySystem instance.

oemof.graph module

Modules for creating and analysing energy system graphs.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/graph.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.graph.create_nx_graph(energy_system=None, optimization_model=None, remove_nodes=None, filename=None, remove_nodes_with_substrings=None, remove_edges=None)[source]

	Create a networkx.DiGraph for the passed energy system and plot it.
See http://networkx.readthedocs.io/en/latest/ for more information.

	Parameters

	
	energy_system (oemof.solph.network.EnergySystem) –

	filename (str) – Absolute filename (with path) to write your graph in the graphml
format. If no filename is given no file will be written.

	remove_nodes (list of strings) – Nodes to be removed e.g. [‘node1’, node2’)]

	remove_nodes_with_substrings (list of strings) – Nodes that contain substrings to be removed e.g. [‘elec’, ‘heat’)]

	remove_edges (list of string tuples) – Edges to be removed e.g. [(‘resource_gas’, ‘gas_balance’)]

Examples

>>> import os
>>> import pandas as pd
>>> from oemof.solph import (Bus, Sink, Transformer, Flow, EnergySystem)
>>> import oemof.graph as grph
>>> datetimeindex = pd.date_range('1/1/2017', periods=3, freq='H')
>>> es = EnergySystem(timeindex=datetimeindex)
>>> b_gas = Bus(label='b_gas', balanced=False)
>>> bel1 = Bus(label='bel1')
>>> bel2 = Bus(label='bel2')
>>> demand_el = Sink(label='demand_el',
... inputs = {bel1: Flow(nominal_value=85,
... actual_value=[0.5, 0.25, 0.75],
... fixed=True)})
>>> pp_gas = Transformer(label='pp_gas',
... inputs={b_gas: Flow()},
... outputs={bel1: Flow(nominal_value=41,
... variable_costs=40)},
... conversion_factors={bel1: 0.5})
>>> line_to2 = Transformer(label='line_to2',
... inputs={bel1: Flow()}, outputs={bel2: Flow()})
>>> line_from2 = Transformer(label='line_from2',
... inputs={bel2: Flow()}, outputs={bel1: Flow()})
>>> es.add(b_gas, bel1, demand_el, pp_gas, bel2, line_to2, line_from2)
>>> my_graph = grph.create_nx_graph(es)
>>> # export graph as .graphml for programs like Yed where it can be
>>> # sorted and customized. this is especially helpful for large graphs
>>> # grph.create_nx_graph(es, filename="my_graph.graphml")
>>> [my_graph.has_node(n)
... for n in ['b_gas', 'bel1', 'pp_gas', 'demand_el', 'tester']]
[True, True, True, True, False]
>>> list(nx.attracting_components(my_graph))
[{'demand_el'}]
>>> sorted(list(nx.strongly_connected_components(my_graph))[1])
['bel1', 'bel2', 'line_from2', 'line_to2']
>>> new_graph = grph.create_nx_graph(energy_system=es,
... remove_nodes_with_substrings=['b_'],
... remove_nodes=['pp_gas'],
... remove_edges=[('bel2', 'line_from2')],
... filename='test_graph')
>>> [new_graph.has_node(n)
... for n in ['b_gas', 'bel1', 'pp_gas', 'demand_el', 'tester']]
[False, True, False, True, False]
>>> my_graph.has_edge('pp_gas', 'bel1')
True
>>> new_graph.has_edge('bel2', 'line_from2')
False
>>> os.remove('test_graph.graphml')

Notes

Needs graphviz and networkx (>= v.1.11) to work properly.
Tested on Ubuntu 16.04 x64 and solydxk (debian 9).

oemof.groupings module

All you need to create groups of stuff in your energy system.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/groupings.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.groupings.DEFAULT = <oemof.groupings.Grouping object>

	The default Grouping.

This one is always present in an energy system. It stores every entity under its uid and raises an error if another entity with the same uid get’s added to the energy system.

	
class oemof.groupings.Flows(key=None, constant_key=None, filter=None, **kwargs)[source]

	Bases: oemof.groupings.Nodes

Specialises Grouping to group the flows connected to nodes into sets.
Note that this specifically means that the key, and
value functions act on a set of flows.

	
value(flows)[source]

	Returns a set containing only flows, so groups are
sets of flows.

	
class oemof.groupings.FlowsWithNodes(key=None, constant_key=None, filter=None, **kwargs)[source]

	Bases: oemof.groupings.Nodes

Specialises Grouping to act on the flows connected to
nodes and create sets of
(source, target, flow) tuples.
Note that this specifically means that the key, and
value functions act on sets like these.

	
value(tuples)[source]

	Returns a set containing only tuples, so groups are
sets of tuples.

	
class oemof.groupings.Grouping(key=None, constant_key=None, filter=None, **kwargs)[source]

	Bases: object

Used to aggregate entities in an
energy system into
groups.

The way Groupings work is that each Grouping
g of an energy system is called whenever an entity is added to the energy system (and for each
entity already present, if the energy
system is created with existing enties).
The call g(e, groups), where e is an entity and groups is a dictionary mapping
group keys to groups, then uses the three functions key, value and merge in the following way:

	key(e) is called to obtain a key k
under which the group should be stored,

	value(e) is called to obtain a value
v (the actual group) to store under k,

	if you supplied a filter() argument, v is
filtered using that function,

	otherwise, if there is not yet anything stored under
groups[k], groups[k] is set to v. Otherwise
merge is used to figure out how to merge
v into the old value of groups[k], i.e.
groups[k] is set to merge(v, groups[k]).

Instead of trying to use this class directly, have a look at its
subclasses, like Nodes, which should cater for most use cases.

Notes

When overriding methods using any of the constructor parameters, you don’t
have access to self in the corresponding function. If you need
access to self, subclass Grouping and override the methods
in the subclass.

A Grouping may be called more than once on the same object
e, so one should make sure that user defined Grouping
g is idempotent, i.e. g(e, g(e, d)) == g(e, d).

	Parameters

	
	key (callable or hashable) – Specifies (if not callable) or extracts (if callable) a key for each entity of
the energy system.

	constant_key (hashable (optional)) – Specifies a constant key. Keys specified using
this parameter are not called but taken as is.

	value (callable, optional) – Overrides the default behaviour of value.

	filter (callable, optional) – If supplied, whatever is returned by value() is filtered through this. Mostly useful in conjunction with
static (i.e. non-callable) keys.
See filter() for more details.

	merge (callable, optional) – Overrides the default behaviour of merge.

	
filter(group)[source]

	Filter the group returned by value()
before storing it.

Should return a boolean value. If the group returned by
value() is iterable, this
function is used (via Python’s builtin filter) to select the values which should be retained in
group. If group is not iterable, it is simply called on group itself
and the return value decides whether group is stored
(True) or not (False).

	
key(e)[source]

	Obtain a key under which to store the group.

You have to supply this method yourself using the key parameter
when creating Grouping instances.

Called for every entity e
of the energy system. Expected to return the key (i.e. a valid
hashable) under which the group value(e) will be stored. If it should be added to more than
one group, return a list (or any other non-hashable, iterable) containing the group keys.

Return None if you don’t want to store e in a group.

	
merge(new, old)[source]

	Merge a known old group with a new one.

This method is called if there is already a value stored under
group[key(e)]. In that case, merge(value(e),
group[key(e)]) is called and should return the new
group to store under key(e).

The default behaviour is to raise an error if new and old
are not identical.

	
value(e)[source]

	Generate the group obtained from e.

This methd returns the actual group obtained from e. Like
key, it is called for every e in the
energy system. If there is no group stored under key(e), groups[key(e)] is set to value(e). Otherwise merge(value(e), groups[key(e)]) is called.

The default returns the entity
itself.

	
class oemof.groupings.Nodes(key=None, constant_key=None, filter=None, **kwargs)[source]

	Bases: oemof.groupings.Grouping

Specialises Grouping to group nodes
into sets.

	
merge(new, old)[source]

	Updates old to be the union of old
and new.

	
value(e)[source]

	Returns a set containing only e, so groups are
sets of node.

oemof.network module

This package (along with its subpackages) contains the classes used to model
energy systems. An energy system is modelled as a graph/network of entities
with very specific constraints on which types of entities are allowed to be
connected.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/network.py

SPDX-License-Identifier: GPL-3.0-or-later

	
class oemof.network.Bus(*args, **kwargs)[source]

	Bases: oemof.network.Node

	
class oemof.network.Component(*args, **kwargs)[source]

	Bases: oemof.network.Node

	
class oemof.network.Entity(**kwargs)[source]

	Bases: object

The most abstract type of vertex in an energy system graph. Since each
entity in an energy system has to be uniquely identifiable and
connected (either via input or via output) to at least one other
entity, these properties are collected here so that they are shared
with descendant classes.

	Parameters

	
	uid (string or tuple) – Unique component identifier of the entity.

	inputs (list) – List of Entities acting as input to this Entity.

	outputs (list) – List of Entities acting as output from this Entity.

	geo_data (shapely.geometry object) – Geo-spatial data with informations for location/region-shape. The
geometry can be a polygon/multi-polygon for regions, a line fore
transport objects or a point for objects such as transformer sources.

	
registry

	The central registry keeping track of all Node's
created. If this is None, Node instances are not
kept track of. Assign an EnergySystem to this attribute to have it
become the a node registry, i.e. all nodes created are added to its nodes
property on construction.

	Type

	EnergySystem

	
add_regions(regions)[source]

	Add regions to self.regions

	
optimization_options = {}

	

	
registry = None

	

	
class oemof.network.Inputs(flows, target)[source]

	Bases: collections.abc.MutableMapping

A special helper to map n1.inputs[n2] to n2.outputs[n1].

	
class oemof.network.Node(*args, **kwargs)[source]

	Bases: object

Represents a Node in an energy system graph.

Abstract superclass of the two general types of nodes of an energy system
graph, collecting attributes and operations common to all types of nodes.
Users should neither instantiate nor subclass this, but use
Component, Bus or one of their subclasses instead.

	Parameters

	
	label (hashable, optional) – Used as the string representation of this node. If this parameter is
not an instance of str it will be converted to a string and
the result will be used as this node’s label, which should be
unique with respect to the other nodes in the energy system graph this
node belongs to. If this parameter is not supplied, the string
representation of this node will instead be generated based on this
nodes class and id.

	inputs (list or dict, optional) – Either a list of this nodes’ input nodes or a dictionary mapping input
nodes to corresponding inflows (i.e. input values).

	outputs (list or dict, optional) – Either a list of this nodes’ output nodes or a dictionary mapping
output nodes to corresponding outflows (i.e. output values).

	flow (function, optional) – A function taking this node and a target node as a parameter (i.e.
something of the form def f(self, target)), returning the
flow originating from this node into target.

	
__slots__

	See the Python documentation on __slots__ [https://docs.python.org/3/reference/datamodel.html#slots] for more
information.

	Type

	str or iterable of str

	
inputs

	Dictionary mapping input Nodes n to flows from
n into self.

	Type

	dict

	
label

	If this node was given a label on construction, this
attribute holds the actual object passed as a parameter. Otherwise
node.label is a synonym for str(node).

	Type

	object

	
outputs

	Dictionary mapping output Nodes n to flows from
self into n.

	Type

	dict

	
registry = None

	

	
class oemof.network.Outputs(flows, source)[source]

	Bases: collections.abc.MutableMapping

Helper that intercepts modifications to update Inputs symmetrically.

	
class oemof.network.Sink(*args, **kwargs)[source]

	Bases: oemof.network.Component

	
class oemof.network.Source(*args, **kwargs)[source]

	Bases: oemof.network.Component

	
class oemof.network.Transformer(*args, **kwargs)[source]

	Bases: oemof.network.Component

	
oemof.network.registry_changed_to(r)[source]

	Override registry during execution of a block and restore it afterwards.

	
oemof.network.temporarily_modifies_registry(function)[source]

	Backup registry before and restore it after execution of function.

Module contents

oemof.outputlib package

Submodules

oemof.outputlib.processing module

oemof.outputlib.views module

Module contents

oemof.solph package

Submodules

oemof.solph.blocks module

oemof.solph.components module

oemof.solph.constraints module

oemof.solph.custom module

oemof.solph.groupings module

oemof.solph.models module

oemof.solph.network module

oemof.solph.options module

oemof.solph.plumbing module

Plumbing stuff.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/solph/plumbing.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.solph.plumbing.sequence(sequence_or_scalar)

	Tests if an object is sequence (except string) or scalar and returns
a the original sequence if object is a sequence and a ‘emulated’ sequence
object of class _Sequence if object is a scalar or string.

	Parameters

	sequence_or_scalar (array-like, None, int, float) –

Examples

>>> sequence([1,2])
[1, 2]

>>> x = sequence(10)
>>> x[0]
10

>>> x[10]
10
>>> print(x)
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

Module contents

oemof.tools package

Submodules

oemof.tools.console_scripts module

oemof.tools.datapackage module

oemof.tools.economics module

Module to collect useful functions for economic calculation.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/economics.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.tools.economics.annuity(capex, n, wacc)

	Calculate the annuity.

annuity = capex * (wacc * (1 + wacc) ** n) / ((1 + wacc) ** n - 1)

	Parameters

	
	capex (float) – Capital expenditure (NPV of investment)

	n (int) – Number of years that the investment is used (economic lifetime)

	wacc (float) – Weighted average cost of capital

	Returns

	float

	Return type

	annuity

oemof.tools.helpers module

This is a collection of helper functions which work on their own and can be
used by various classes. If there are too many helper-functions, they will
be sorted in different modules.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/helpers.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.tools.helpers.extend_basic_path(subfolder)

	Returns a path based on the basic oemof path and creates it if
necessary. The subfolder is the name of the path extension.

	
oemof.tools.helpers.flatten(d, parent_key='', sep='_')

	Flatten dictionary by compressing keys.

	See: https://stackoverflow.com/questions/6027558/

	flatten-nested-python-dictionaries-compressing-keys

d : dictionary
sep : separator for flattening keys

	Returns

	

	Return type

	dict

	
oemof.tools.helpers.get_basic_path()

	Returns the basic oemof path and creates it if necessary.
The basic path is the ‘.oemof’ folder in the $HOME directory.

oemof.tools.logger module

Helpers to log your modeling process with oemof.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/logger.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.tools.logger.check_git_branch()

	Passes the used branch and commit to the logger

>>> from oemof.tools import logger
>>> try:
... v = logger.check_git_branch()
... except FileNotFoundError:
... v = ('abcdefgh', 'branch')
>>> type(v)
<class 'tuple'>
>>> type(v[0])
<class 'str'>
>>> len(v[0])
8

	
oemof.tools.logger.check_version()

	Returns the actual version number of the used oemof version.

>>> from oemof.tools import logger
>>> v = logger.check_version()
>>> int(v.split('.')[0])
0

	
oemof.tools.logger.define_logging(logpath=None, logfile='oemof.log', file_format=None, screen_format=None, file_datefmt=None, screen_datefmt=None, screen_level=20, file_level=10, log_version=True, log_path=True, timed_rotating=None)

	Initialise customisable logger.

	Parameters

	
	logfile (str) – Name of the log file, default: oemof.log

	logpath (str) – The path for log files. By default a “.oemof’ folder is created in your
home directory with subfolder called ‘log_files’.

	file_format (str) – Format of the file output.
Default: “%(asctime)s - %(levelname)s - %(module)s - %(message)s”

	screen_format (str) – Format of the screen output.
Default: “%(asctime)s-%(levelname)s-%(message)s”

	file_datefmt (str) – Format of the datetime in the file output. Default: None

	screen_datefmt (str) – Format of the datetime in the screen output. Default: “%H:%M:%S”

	screen_level (int) – Level of logging to stdout. Default: 20 (logging.INFO)

	file_level (int) – Level of logging to file. Default: 10 (logging.DEBUG)

	log_version (boolean) – If True the actual version or commit is logged while initialising the
logger.

	log_path (boolean) – If True the used file path is logged while initialising the logger.

	timed_rotating (dict) – Option to pass parameters to the TimedRotatingFileHandler.

	Returns

	str

	Return type

	Place where the log file is stored.

Notes

By default the INFO level is printed on the screen and the DEBUG level
in a file, but you can easily configure the logger.
Every module that wants to create logging messages has to import the
logging module. The oemof logger module has to be imported once to
initialise it.

Examples

To define the default logger you have to import the python logging
library and this function. The first logging message should be the
path where the log file is saved to.

>>> import logging
>>> from oemof.tools import logger
>>> mypath = logger.define_logging(
... log_path=True, log_version=True, timed_rotating={'backupCount': 4},
... screen_level=logging.ERROR, screen_datefmt = "no_date")
>>> mypath[-9:]
'oemof.log'
>>> logging.debug("Hallo")

	
oemof.tools.logger.get_version()

	Returns a string part of the used version. If the commit and the branch
is available the commit and the branch will be returned otherwise the
version number.

>>> from oemof.tools import logger
>>> v = logger.get_version()
>>> type(v)
<class 'str'>

Module contents

oemof.outputlib package

Submodules

oemof.outputlib.processing module

oemof.outputlib.views module

Module contents

oemof.solph package

Submodules

oemof.solph.blocks module

oemof.solph.components module

oemof.solph.constraints module

oemof.solph.custom module

oemof.solph.groupings module

oemof.solph.models module

oemof.solph.network module

oemof.solph.options module

oemof.solph.plumbing module

Plumbing stuff.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/solph/plumbing.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.solph.plumbing.sequence(sequence_or_scalar)

	Tests if an object is sequence (except string) or scalar and returns
a the original sequence if object is a sequence and a ‘emulated’ sequence
object of class _Sequence if object is a scalar or string.

	Parameters

	sequence_or_scalar (array-like, None, int, float) –

Examples

>>> sequence([1,2])
[1, 2]

>>> x = sequence(10)
>>> x[0]
10

>>> x[10]
10
>>> print(x)
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

Module contents

oemof.tools package

Submodules

oemof.tools.console_scripts module

oemof.tools.datapackage module

oemof.tools.economics module

Module to collect useful functions for economic calculation.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/economics.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.tools.economics.annuity(capex, n, wacc)

	Calculate the annuity.

annuity = capex * (wacc * (1 + wacc) ** n) / ((1 + wacc) ** n - 1)

	Parameters

	
	capex (float) – Capital expenditure (NPV of investment)

	n (int) – Number of years that the investment is used (economic lifetime)

	wacc (float) – Weighted average cost of capital

	Returns

	float

	Return type

	annuity

oemof.tools.helpers module

This is a collection of helper functions which work on their own and can be
used by various classes. If there are too many helper-functions, they will
be sorted in different modules.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/helpers.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.tools.helpers.extend_basic_path(subfolder)

	Returns a path based on the basic oemof path and creates it if
necessary. The subfolder is the name of the path extension.

	
oemof.tools.helpers.flatten(d, parent_key='', sep='_')

	Flatten dictionary by compressing keys.

	See: https://stackoverflow.com/questions/6027558/

	flatten-nested-python-dictionaries-compressing-keys

d : dictionary
sep : separator for flattening keys

	Returns

	

	Return type

	dict

	
oemof.tools.helpers.get_basic_path()

	Returns the basic oemof path and creates it if necessary.
The basic path is the ‘.oemof’ folder in the $HOME directory.

oemof.tools.logger module

Helpers to log your modeling process with oemof.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/logger.py

SPDX-License-Identifier: GPL-3.0-or-later

	
oemof.tools.logger.check_git_branch()

	Passes the used branch and commit to the logger

>>> from oemof.tools import logger
>>> try:
... v = logger.check_git_branch()
... except FileNotFoundError:
... v = ('abcdefgh', 'branch')
>>> type(v)
<class 'tuple'>
>>> type(v[0])
<class 'str'>
>>> len(v[0])
8

	
oemof.tools.logger.check_version()

	Returns the actual version number of the used oemof version.

>>> from oemof.tools import logger
>>> v = logger.check_version()
>>> int(v.split('.')[0])
0

	
oemof.tools.logger.define_logging(logpath=None, logfile='oemof.log', file_format=None, screen_format=None, file_datefmt=None, screen_datefmt=None, screen_level=20, file_level=10, log_version=True, log_path=True, timed_rotating=None)

	Initialise customisable logger.

	Parameters

	
	logfile (str) – Name of the log file, default: oemof.log

	logpath (str) – The path for log files. By default a “.oemof’ folder is created in your
home directory with subfolder called ‘log_files’.

	file_format (str) – Format of the file output.
Default: “%(asctime)s - %(levelname)s - %(module)s - %(message)s”

	screen_format (str) – Format of the screen output.
Default: “%(asctime)s-%(levelname)s-%(message)s”

	file_datefmt (str) – Format of the datetime in the file output. Default: None

	screen_datefmt (str) – Format of the datetime in the screen output. Default: “%H:%M:%S”

	screen_level (int) – Level of logging to stdout. Default: 20 (logging.INFO)

	file_level (int) – Level of logging to file. Default: 10 (logging.DEBUG)

	log_version (boolean) – If True the actual version or commit is logged while initialising the
logger.

	log_path (boolean) – If True the used file path is logged while initialising the logger.

	timed_rotating (dict) – Option to pass parameters to the TimedRotatingFileHandler.

	Returns

	str

	Return type

	Place where the log file is stored.

Notes

By default the INFO level is printed on the screen and the DEBUG level
in a file, but you can easily configure the logger.
Every module that wants to create logging messages has to import the
logging module. The oemof logger module has to be imported once to
initialise it.

Examples

To define the default logger you have to import the python logging
library and this function. The first logging message should be the
path where the log file is saved to.

>>> import logging
>>> from oemof.tools import logger
>>> mypath = logger.define_logging(
... log_path=True, log_version=True, timed_rotating={'backupCount': 4},
... screen_level=logging.ERROR, screen_datefmt = "no_date")
>>> mypath[-9:]
'oemof.log'
>>> logging.debug("Hallo")

	
oemof.tools.logger.get_version()

	Returns a string part of the used version. If the commit and the branch
is available the commit and the branch will be returned otherwise the
version number.

>>> from oemof.tools import logger
>>> v = logger.get_version()
>>> type(v)
<class 'str'>

Module contents

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 oemof	

 	
 	
 oemof.energy_system	

 	
 	
 oemof.graph	

 	
 	
 oemof.groupings	

 	
 	
 oemof.network	

 	
 	
 oemof.solph.plumbing	

 	
 	
 oemof.tools	

 	
 	
 oemof.tools.economics	

 	
 	
 oemof.tools.helpers	

 	
 	
 oemof.tools.logger	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | V

_

 	
 	__slots__ (oemof.network.Node attribute)

A

 	
 	add() (oemof.energy_system.EnergySystem method)

 	
 	add_regions() (oemof.network.Entity method)

 	annuity() (in module oemof.tools.economics)

B

 	
 	Bus (class in oemof.network)

C

 	
 	check_git_branch() (in module oemof.tools.logger)

 	check_version() (in module oemof.tools.logger)

 	
 	Component (class in oemof.network)

 	create_nx_graph() (in module oemof.graph)

D

 	
 	DEFAULT (in module oemof.groupings)

 	
 	define_logging() (in module oemof.tools.logger)

 	dump() (oemof.energy_system.EnergySystem method)

E

 	
 	EnergySystem (class in oemof.energy_system)

 	entities (oemof.energy_system.EnergySystem attribute)

 	
 	Entity (class in oemof.network)

 	extend_basic_path() (in module oemof.tools.helpers)

F

 	
 	filter() (oemof.groupings.Grouping method)

 	flatten() (in module oemof.tools.helpers)

 	Flows (class in oemof.groupings)

 	
 	flows() (oemof.energy_system.EnergySystem method)

 	FlowsWithNodes (class in oemof.groupings)

 	from_datapackage() (oemof.energy_system.EnergySystem class method)

G

 	
 	get_basic_path() (in module oemof.tools.helpers)

 	get_version() (in module oemof.tools.logger)

 	
 	Grouping (class in oemof.groupings)

 	groups (oemof.energy_system.EnergySystem attribute), [1]

I

 	
 	Inputs (class in oemof.network)

 	
 	inputs (oemof.network.Node attribute)

K

 	
 	key() (oemof.groupings.Grouping method)

L

 	
 	label (oemof.network.Node attribute)

M

 	
 	merge() (oemof.groupings.Grouping method)

 	(oemof.groupings.Nodes method)

N

 	
 	Node (class in oemof.network)

 	
 	Nodes (class in oemof.groupings)

 	nodes (oemof.energy_system.EnergySystem attribute)

O

 	
 	oemof (module)

 	oemof.energy_system (module)

 	oemof.graph (module)

 	oemof.groupings (module)

 	oemof.network (module)

 	oemof.solph.plumbing (module)

 	
 	oemof.tools (module)

 	oemof.tools.economics (module)

 	oemof.tools.helpers (module)

 	oemof.tools.logger (module)

 	optimization_options (oemof.network.Entity attribute)

 	Outputs (class in oemof.network)

 	outputs (oemof.network.Node attribute)

R

 	
 	registry (oemof.network.Entity attribute), [1]

 	(oemof.network.Node attribute)

 	
 	registry_changed_to() (in module oemof.network)

 	restore() (oemof.energy_system.EnergySystem method)

 	results (oemof.energy_system.EnergySystem attribute)

S

 	
 	sequence() (in module oemof.solph.plumbing)

 	
 	Sink (class in oemof.network)

 	Source (class in oemof.network)

T

 	
 	temporarily_modifies_registry() (in module oemof.network)

 	
 	timeindex (oemof.energy_system.EnergySystem attribute)

 	Transformer (class in oemof.network)

V

 	
 	value() (oemof.groupings.Flows method)

 	(oemof.groupings.FlowsWithNodes method)

 	(oemof.groupings.Grouping method)

 	(oemof.groupings.Nodes method)

 All modules for which code is available

	oemof.energy_system

	oemof.graph

	oemof.groupings

	oemof.network

	oemof.solph.plumbing

	oemof.tools.economics

	oemof.tools.helpers

	oemof.tools.logger

 Source code for oemof.energy_system

-*- coding: utf-8 -*-

"""Basic EnergySystem class

This file is part of project oemof (github.com/oemof/oemof). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/energy_system.py

SPDX-License-Identifier: GPL-3.0-or-later
"""

from functools import partial
import collections.abc as cabc
import logging
import os
import re

import pandas as pd
import dill as pickle

from oemof.groupings import DEFAULT as BY_UID, Grouping, Nodes
from oemof.network import Bus, Component

[docs]class EnergySystem:
 r"""Defining an energy supply system to use oemof's solver libraries.

 Note

 The list of regions is not necessary to use the energy system with solph.

 Parameters

 entities : list of :class:`Entity <oemof.core.network.Entity>`, optional
 A list containing the already existing :class:`Entities
 <oemof.core.network.Entity>` that should be part of the energy system.
 Stored in the :attr:`entities` attribute.
 Defaults to `[]` if not supplied.
 timeindex : pandas.datetimeindex
 Define the time range and increment for the energy system.
 groupings : list
 The elements of this list are used to construct :class:`Groupings
 <oemof.core.energy_system.Grouping>` or they are used directly if they
 are instances of :class:`Grouping <oemof.core.energy_system.Grouping>`.
 These groupings are then used to aggregate the entities added to this
 energy system into :attr:`groups`.
 By default, there'll always be one group for each :attr:`uid
 <oemof.core.network.Entity.uid>` containing exactly the entity with the
 given :attr:`uid <oemof.core.network.Entity.uid>`.
 See the :ref:`examples <energy-system-examples>` for more information.

 Attributes

 entities : list of :class:`Entity <oemof.core.network.Entity>`
 A list containing the :class:`Entities <oemof.core.network.Entity>`
 that comprise the energy system. If this :class:`EnergySystem` is
 set as the :attr:`registry <oemof.core.network.Entity.registry>`
 attribute, which is done automatically on :class:`EnergySystem`
 construction, newly created :class:`Entities
 <oemof.core.network.Entity>` are automatically added to this list on
 construction.
 groups : dict
 results : dictionary
 A dictionary holding the results produced by the energy system.
 Is `None` while no results are produced.
 Currently only set after a call to :meth:`optimize` after which it
 holds the return value of :meth:`om.results()
 <oemof.solph.optimization_model.OptimizationModel.results>`.
 See the documentation of that method for a detailed description of the
 structure of the results dictionary.
 timeindex : pandas.index, optional
 Define the time range and increment for the energy system. This is an
 optional attribute but might be import for other functions/methods that
 use the EnergySystem class as an input parameter.

 .. _energy-system-examples:
 Examples

 Regardles of additional groupings, :class:`entities
 <oemof.core.network.Entity>` will always be grouped by their :attr:`uid
 <oemof.core.network.Entity.uid>`:

 >>> from oemof.network import Entity
 >>> from oemof.network import Bus, Sink
 >>> es = EnergySystem()
 >>> bus = Bus(label='electricity')
 >>> es.add(bus)
 >>> bus is es.groups['electricity']
 True

 For simple user defined groupings, you can just supply a function that
 computes a key from an :class:`entity <oemof.core.network.Entity>` and the
 resulting groups will be sets of :class:`entities
 <oemof.core.network.Entity>` stored under the returned keys, like in this
 example, where :class:`entities <oemof.core.network.Entity>` are grouped by
 their `type`:

 >>> es = EnergySystem(groupings=[type])
 >>> buses = set(Bus(label="Bus {}".format(i)) for i in range(9))
 >>> es.add(*buses)
 >>> components = set(Sink(label="Component {}".format(i))
 ... for i in range(9))
 >>> es.add(*components)
 >>> buses == es.groups[Bus]
 True
 >>> components == es.groups[Sink]
 True

 """
 def __init__(self, **kwargs):
 for attribute in ['entities']:
 setattr(self, attribute, kwargs.get(attribute, []))

 self._groups = {}
 self._groupings = ([BY_UID] +
 [g if isinstance(g, Grouping) else Nodes(g)
 for g in kwargs.get('groupings', [])])
 for e in self.entities:
 for g in self._groupings:
 g(e, self.groups)
 self.results = kwargs.get('results')

 self.timeindex = kwargs.get('timeindex',
 pd.date_range(start=pd.to_datetime('today'),
 periods=1, freq='H'))

 self.temporal = kwargs.get('temporal')

 @staticmethod
 def _regroup(entity, groups, groupings):
 for g in groupings:
 g(entity, groups)
 return groups

 try:
 from .tools.datapackage import deserialize_energy_system
 from_datapackage = classmethod(deserialize_energy_system)
 except ImportError as e:
[docs] @classmethod
 def from_datapackage(cls, *args, **kwargs):
 raise e

 def _add(self, entity):
 self.entities.append(entity)
 self._groups = partial(self._regroup, entity, self.groups,
 self._groupings)

[docs] def add(self, *nodes):
 """ Add :class:`nodes <oemof.network.Node>` to this energy system.
 """
 for n in nodes:
 self._add(n)

 @property
 def groups(self):
 while callable(self._groups):
 self._groups = self._groups()
 return self._groups

 @property
 def nodes(self):
 return self.entities

 @nodes.setter
 def nodes(self, value):
 self.entities = value

[docs] def flows(self):
 return {(source, target): source.outputs[target]
 for source in self.nodes
 for target in source.outputs}

[docs] def dump(self, dpath=None, filename=None):
 r""" Dump an EnergySystem instance.
 """
 if dpath is None:
 bpath = os.path.join(os.path.expanduser("~"), '.oemof')
 if not os.path.isdir(bpath):
 os.mkdir(bpath)
 dpath = os.path.join(bpath, 'dumps')
 if not os.path.isdir(dpath):
 os.mkdir(dpath)

 if filename is None:
 filename = 'es_dump.oemof'

 pickle.dump(self.__dict__, open(os.path.join(dpath, filename), 'wb'))

 msg = ('Attributes dumped to: {0}'.format(os.path.join(
 dpath, filename)))
 logging.debug(msg)
 return msg

[docs] def restore(self, dpath=None, filename=None):
 r""" Restore an EnergySystem instance.
 """
 logging.info(
 "Restoring attributes will overwrite existing attributes.")
 if dpath is None:
 dpath = os.path.join(os.path.expanduser("~"), '.oemof', 'dumps')

 if filename is None:
 filename = 'es_dump.oemof'

 self.__dict__ = pickle.load(open(os.path.join(dpath, filename), "rb"))
 msg = ('Attributes restored from: {0}'.format(os.path.join(
 dpath, filename)))
 logging.debug(msg)
 return msg

 Source code for oemof.graph

-*- coding: utf-8 -*-

"""Modules for creating and analysing energy system graphs.

This file is part of project oemof (github.com/oemof/oemof). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/graph.py

SPDX-License-Identifier: GPL-3.0-or-later
"""

import networkx as nx
import warnings

[docs]def create_nx_graph(energy_system=None, optimization_model=None,
 remove_nodes=None, filename=None,
 remove_nodes_with_substrings=None, remove_edges=None):
 """
 Create a `networkx.DiGraph` for the passed energy system and plot it.
 See http://networkx.readthedocs.io/en/latest/ for more information.

 Parameters

 energy_system : `oemof.solph.network.EnergySystem`

 filename : str
 Absolute filename (with path) to write your graph in the graphml
 format. If no filename is given no file will be written.

 remove_nodes: list of strings
 Nodes to be removed e.g. ['node1', node2')]

 remove_nodes_with_substrings: list of strings
 Nodes that contain substrings to be removed e.g. ['elec', 'heat')]

 remove_edges: list of string tuples
 Edges to be removed e.g. [('resource_gas', 'gas_balance')]

 Examples

 >>> import os
 >>> import pandas as pd
 >>> from oemof.solph import (Bus, Sink, Transformer, Flow, EnergySystem)
 >>> import oemof.graph as grph
 >>> datetimeindex = pd.date_range('1/1/2017', periods=3, freq='H')
 >>> es = EnergySystem(timeindex=datetimeindex)
 >>> b_gas = Bus(label='b_gas', balanced=False)
 >>> bel1 = Bus(label='bel1')
 >>> bel2 = Bus(label='bel2')
 >>> demand_el = Sink(label='demand_el',
 ... inputs = {bel1: Flow(nominal_value=85,
 ... actual_value=[0.5, 0.25, 0.75],
 ... fixed=True)})
 >>> pp_gas = Transformer(label='pp_gas',
 ... inputs={b_gas: Flow()},
 ... outputs={bel1: Flow(nominal_value=41,
 ... variable_costs=40)},
 ... conversion_factors={bel1: 0.5})
 >>> line_to2 = Transformer(label='line_to2',
 ... inputs={bel1: Flow()}, outputs={bel2: Flow()})
 >>> line_from2 = Transformer(label='line_from2',
 ... inputs={bel2: Flow()}, outputs={bel1: Flow()})
 >>> es.add(b_gas, bel1, demand_el, pp_gas, bel2, line_to2, line_from2)
 >>> my_graph = grph.create_nx_graph(es)
 >>> # export graph as .graphml for programs like Yed where it can be
 >>> # sorted and customized. this is especially helpful for large graphs
 >>> # grph.create_nx_graph(es, filename="my_graph.graphml")
 >>> [my_graph.has_node(n)
 ... for n in ['b_gas', 'bel1', 'pp_gas', 'demand_el', 'tester']]
 [True, True, True, True, False]
 >>> list(nx.attracting_components(my_graph))
 [{'demand_el'}]
 >>> sorted(list(nx.strongly_connected_components(my_graph))[1])
 ['bel1', 'bel2', 'line_from2', 'line_to2']
 >>> new_graph = grph.create_nx_graph(energy_system=es,
 ... remove_nodes_with_substrings=['b_'],
 ... remove_nodes=['pp_gas'],
 ... remove_edges=[('bel2', 'line_from2')],
 ... filename='test_graph')
 >>> [new_graph.has_node(n)
 ... for n in ['b_gas', 'bel1', 'pp_gas', 'demand_el', 'tester']]
 [False, True, False, True, False]
 >>> my_graph.has_edge('pp_gas', 'bel1')
 True
 >>> new_graph.has_edge('bel2', 'line_from2')
 False
 >>> os.remove('test_graph.graphml')

 Notes

 Needs graphviz and networkx (>= v.1.11) to work properly.
 Tested on Ubuntu 16.04 x64 and solydxk (debian 9).
 """
 # construct graph from nodes and flows
 grph = nx.DiGraph()

 # Get energy_system from Model
 if energy_system is None:
 msg = ("\nThe optimisation_model attribute will be removed, pass the "
 "energy system instead.")
 warnings.warn(msg, FutureWarning)
 energy_system = optimization_model.es

 # add nodes
 for n in energy_system.nodes:
 grph.add_node(n.label, label=n.label)

 # add labeled flows on directed edge if an optimization_model has been
 # passed or undirected edge otherwise
 for n in energy_system.nodes:
 for i in n.inputs.keys():
 weight = getattr(energy_system.flows()[(i, n)],
 'nominal_value', None)
 if weight is None:
 grph.add_edge(i.label, n.label)
 else:
 grph.add_edge(i.label, n.label, weigth=format(weight, '.2f'))

 # remove nodes and edges based on precise labels
 if remove_nodes is not None:
 grph.remove_nodes_from(remove_nodes)
 if remove_edges is not None:
 grph.remove_edges_from(remove_edges)

 # remove nodes based on substrings
 if remove_nodes_with_substrings is not None:
 for i in remove_nodes_with_substrings:
 remove_nodes = [v.label for v in energy_system.nodes
 if i in v.label]
 grph.remove_nodes_from(remove_nodes)

 if filename is not None:
 if filename[-8:] != '.graphml':
 filename = filename + '.graphml'
 nx.write_graphml(grph, filename)

 return grph

 Source code for oemof.groupings

-*- coding: utf-8 -*-

""" All you need to create groups of stuff in your energy system.

This file is part of project oemof (github.com/oemof/oemof). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/groupings.py

SPDX-License-Identifier: GPL-3.0-or-later
"""

try:
 from collections.abc import (Hashable, Iterable, Mapping,
 MutableMapping as MuMa)
except ImportError:
 from collections import (Hashable, Iterable, Mapping,
 MutableMapping as MuMa)
from itertools import chain, filterfalse

[docs]class Grouping:
 """
 Used to aggregate :class:`entities <oemof.core.network.Entity>` in an
 :class:`energy system <oemof.core.energy_system.EnergySystem>` into
 :attr:`groups <oemof.core.energy_system.EnergySystem.groups>`.

 The way :class:`Groupings <Grouping>` work is that each :class:`Grouping`
 :obj:`g` of an energy system is called whenever an :class:`entity
 <oemof.core.network.Entity>` is added to the energy system (and for each
 :class:`entity <oemof.core.network.Entity>` already present, if the energy
 system is created with existing enties).
 The call :obj:`g(e, groups)`, where :obj:`e` is an :class:`entity
 <oemof.core.network.Entity>` and :attr:`groups
 <oemof.core.energy_system.EnergySystem.groups>` is a dictionary mapping
 group keys to groups, then uses the three functions :meth:`key
 <Grouping.key>`, :meth:`value <Grouping.value>` and :meth:`merge
 <Grouping.merge>` in the following way:

 - :meth:`key(e) <Grouping.key>` is called to obtain a key :obj:`k`
 under which the group should be stored,
 - :meth:`value(e) <Grouping.value>` is called to obtain a value
 :obj:`v` (the actual group) to store under :obj:`k`,
 - if you supplied a :func:`filter` argument, :obj:`v` is
 :func:`filtered <builtins.filter>` using that function,
 - otherwise, if there is not yet anything stored under
 :obj:`groups[k]`, :obj:`groups[k]` is set to :obj:`v`. Otherwise
 :meth:`merge <Grouping.merge>` is used to figure out how to merge
 :obj:`v` into the old value of :obj:`groups[k]`, i.e.
 :obj:`groups[k]` is set to :meth:`merge(v, groups[k])
 <Grouping.merge>`.

 Instead of trying to use this class directly, have a look at its
 subclasses, like :class:`Nodes`, which should cater for most use cases.

 Notes

 When overriding methods using any of the constructor parameters, you don't
 have access to :obj:`self` in the corresponding function. If you need
 access to :obj:`self`, subclass :class:`Grouping` and override the methods
 in the subclass.

 A :class:`Grouping` may be called more than once on the same object
 :obj:`e`, so one should make sure that user defined :class:`Grouping`
 :obj:`g` is idempotent, i.e. :obj:`g(e, g(e, d)) == g(e, d)`.

 Parameters

 key: callable or hashable

 Specifies (if not callable) or extracts (if callable) a :meth:`key
 <Grouping.key>` for each :class:`entity <oemof.core.network.Entity>` of
 the :class:`energy system <oemof.core.energy_system.EnergySystem>`.

 constant_key: hashable (optional)

 Specifies a constant :meth:`key <Grouping.key>`. Keys specified using
 this parameter are not called but taken as is.

 value: callable, optional

 Overrides the default behaviour of :meth:`value <Grouping.value>`.

 filter: callable, optional

 If supplied, whatever is returned by :meth:`value` is :func:`filtered
 <builtins.filter>` through this. Mostly useful in conjunction with
 static (i.e. non-callable) :meth:`keys <key>`.
 See :meth:`filter` for more details.

 merge: callable, optional

 Overrides the default behaviour of :meth:`merge <Grouping.merge>`.

 """

 def __init__(self, key=None, constant_key=None, filter=None, **kwargs):
 if key and constant_key:
 raise TypeError(
 "Grouping arguments `key` and `constant_key` are " +
 " mutually exclusive.")
 if constant_key:
 self.key = lambda _: constant_key
 elif key:
 self.key = key
 else:
 raise TypeError(
 "Grouping constructor missing required argument: " +
 "one of `key` or `constant_key`.")
 self.filter = filter
 for kw in ["value", "merge", "filter"]:
 if kw in kwargs:
 setattr(self, kw, kwargs[kw])

[docs] def key(self, e):
 """ Obtain a key under which to store the group.

 You have to supply this method yourself using the :obj:`key` parameter
 when creating :class:`Grouping` instances.

 Called for every :class:`entity <oemof.core.network.Entity>` :obj:`e`
 of the energy system. Expected to return the key (i.e. a valid
 :class:`hashable`) under which the group :meth:`value(e)
 <Grouping.value>` will be stored. If it should be added to more than
 one group, return a :class:`list` (or any other :class:`non-hashable
 <Hashable>`, :class:`iterable`) containing the group keys.

 Return :obj:`None` if you don't want to store :obj:`e` in a group.
 """
 raise NotImplementedError(
 "There is no default implementation for `Groupings.key`.\n" +
 "Congratulations, you managed to execute supposedly " +
 "unreachable code.\n" +
 "Please let us know by filing a bug at:\n\n " +
 "https://github.com/oemof/oemof/issues\n")

[docs] def value(self, e):
 """ Generate the group obtained from :obj:`e`.

 This methd returns the actual group obtained from :obj:`e`. Like
 :meth:`key <Grouping.key>`, it is called for every :obj:`e` in the
 energy system. If there is no group stored under :meth:`key(e)
 <Grouping.key>`, :obj:`groups[key(e)]` is set to :meth:`value(e)
 <Grouping.value>`. Otherwise :meth:`merge(value(e), groups[key(e)])
 <Grouping.merge>` is called.

 The default returns the :class:`entity <oemof.core.network.Entity>`
 itself.
 """
 return e

[docs] def merge(self, new, old):
 """ Merge a known :obj:`old` group with a :obj:`new` one.

 This method is called if there is already a value stored under
 :obj:`group[key(e)]`. In that case, :meth:`merge(value(e),
 group[key(e)]) <Grouping.merge>` is called and should return the new
 group to store under :meth:`key(e) <Grouping.key>`.

 The default behaviour is to raise an error if :obj:`new` and :obj:`old`
 are not identical.
 """
 if old is new:
 return old
 raise ValueError("\nGrouping \n " +
 "{}:{}\nand\n {}:{}\ncollides.\n".format(
 id(old), old, id(new), new) +
 "Possibly duplicate uids/labels?")

[docs] def filter(self, group):
 """
 :func:`Filter <builtins.filter>` the group returned by :meth:`value`
 before storing it.

 Should return a boolean value. If the :obj:`group` returned by
 :meth:`value` is :class:`iterable <collections.abc.Iterable>`, this
 function is used (via Python's :func:`builtin filter
 <builtins.filter>`) to select the values which should be retained in
 :obj:`group`. If :obj:`group` is not :class:`iterable
 <collections.abc.Iterable>`, it is simply called on :obj:`group` itself
 and the return value decides whether :obj:`group` is stored
 (:obj:`True`) or not (:obj:`False`).

 """
 raise NotImplementedError(
 "`Groupings.filter` called without being overridden.\n" +
 "Congratulations, you managed to execute supposedly " +
 "unreachable code.\n" +
 "Please let us know by filing a bug at:\n\n " +
 "https://github.com/oemof/oemof/issues\n")

 def __call__(self, e, d):
 k = self.key(e) if callable(self.key) else self.key
 if k is None:
 return
 v = self.value(e)
 if isinstance(v, MuMa):
 for k in list(filterfalse(self.filter, v)):
 v.pop(k)
 elif isinstance(v, Mapping):
 v = type(v)((k, v[k]) for k in v if self.filter(k))
 elif isinstance(v, Iterable):
 v = type(v)(filter(self.filter, v))
 elif self.filter and not self.filter(v):
 return
 if not v:
 return
 for group in (k if (isinstance(k, Iterable) and not
 isinstance(k, Hashable))
 else [k]):
 d[group] = (self.merge(v, d[group]) if group in d else v)

[docs]class Nodes(Grouping):
 """
 Specialises :class:`Grouping` to group :class:`nodes <oemof.network.Node>`
 into :class:`sets <set>`.
 """
[docs] def value(self, e):
 """
 Returns a :class:`set` containing only :obj:`e`, so groups are
 :class:`sets <set>` of :class:`node <oemof.network.Node>`.
 """
 return {e}

[docs] def merge(self, new, old):
 """
 :meth:`Updates <set.update>` :obj:`old` to be the union of :obj:`old`
 and :obj:`new`.
 """
 return old.union(new)

[docs]class Flows(Nodes):
 """
 Specialises :class:`Grouping` to group the flows connected to :class:`nodes
 <oemof.network.Node>` into :class:`sets <set>`.
 Note that this specifically means that the :meth:`key <Flows.key>`, and
 :meth:`value <Flows.value>` functions act on a set of flows.
 """
[docs] def value(self, flows):
 """
 Returns a :class:`set` containing only :obj:`flows`, so groups are
 :class:`sets <set>` of flows.
 """
 return set(flows)

 def __call__(self, n, d):
 flows = set(chain(n.outputs.values(), n.inputs.values()))
 super().__call__(flows, d)

[docs]class FlowsWithNodes(Nodes):
 """
 Specialises :class:`Grouping` to act on the flows connected to
 :class:`nodes <oemof.network.Node>` and create :class:`sets <set>` of
 :obj:`(source, target, flow)` tuples.
 Note that this specifically means that the :meth:`key <Flows.key>`, and
 :meth:`value <Flows.value>` functions act on sets like these.
 """
[docs] def value(self, tuples):
 """
 Returns a :class:`set` containing only :obj:`tuples`, so groups are
 :class:`sets <set>` of :obj:`tuples`.
 """
 return set(tuples)

 def __call__(self, n, d):
 tuples = set(chain(
 ((n, t, f) for (t, f) in n.outputs.items()),
 ((s, n, f) for (s, f) in n.inputs.items())))
 super().__call__(tuples, d)

def _uid_or_str(node_or_entity):
 """ Helper function to support the transition from `Entitie`s to `Node`s.
 """
 return (node_or_entity.uid if hasattr(node_or_entity, "uid")
 else str(node_or_entity))

DEFAULT = Grouping(_uid_or_str)
""" The default :class:`Grouping`.

This one is always present in an :class:`energy system
<oemof.core.energy_system.EnergySystem>`. It stores every :class:`entity
<oemof.core.network.Entity>` under its :attr:`uid
<oemof.core.network.Entity.uid>` and raises an error if another :class:`entity
<oemof.core.network.Entity>` with the same :attr:`uid
<oemof.core.network.Entity.uid>` get's added to the :class:`energy system
<oemof.core.energy_system.EnergySystem>`.
"""

 Source code for oemof.network

-*- coding: utf-8 -*-

"""This package (along with its subpackages) contains the classes used to model
energy systems. An energy system is modelled as a graph/network of entities
with very specific constraints on which types of entities are allowed to be
connected.

This file is part of project oemof (github.com/oemof/oemof). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/network.py

SPDX-License-Identifier: GPL-3.0-or-later
"""

from collections import MutableMapping as MM
from contextlib import contextmanager
from functools import total_ordering
from weakref import WeakKeyDictionary as WeKeDi, WeakSet as WeSe

[docs]class Inputs(MM):
 """ A special helper to map `n1.inputs[n2]` to `n2.outputs[n1]`.
 """
 def __init__(self, flows, target):
 self.flows = flows
 self.target = target

 def __getitem__(self, key):
 return self.flows.__getitem__((key, self.target))

 def __delitem__(self, key):
 return self.flows.__delitem__((key, self.target))

 def __setitem__(self, key, value):
 return self.flows.__setitem__((key, self.target), value)

 def __iter__(self):
 return self.flows._in_edges.get(self.target, ()).__iter__()

 def __len__(self):
 return self.flows._in_edges.get(self.target, ()).__len__()

[docs]class Outputs(MM):
 """ Helper that intercepts modifications to update `Inputs` symmetrically.
 """
 def __init__(self, flows, source):
 self.flows = flows
 self.source = source

 def __getitem__(self, key):
 return self.flows.__getitem__((self.source, key))

 def __delitem__(self, key):
 return self.flows.__delitem__((self.source, key))

 def __setitem__(self, key, value):
 return self.flows.__setitem__((self.source, key), value)

 def __iter__(self):
 return self.flows._out_edges.get(self.source, ()).__iter__()

 def __len__(self):
 return self.flows._out_edges.get(self.source, ()).__len__()

class _Edges(MM):
 """ Internal utility class keeping track of known edges.

 As this is currently quite dirty and hackish, it should be treated as an
 internal implementation detail with an unstable interface. Maye it can be
 converted to a fully fledged useful :python:`Edge` class later on, but for
 now it simply hides most of the dirty secrets of the :class:`Node` class.

 """
 _in_edges = WeKeDi()
 _out_edges = WeKeDi()
 # TODO: Either figure out how to use weak references here, or convert the
 # whole graph datastructure to normal dictionaries.
 # Background: I had to stop wrestling with the garbage collector,
 # because python doesn't allow weak references to tuples
 # and I couldn't figure out a way to key edges in a way
 # that the endpoints of the edge get garbage collected
 # once no other references to them exist anymore.
 # I guess the best way would be to use normal dictionarier, stop
 # using a global variable for all edges and put a member variable
 # for all it's edges on an energy system.
 _flows = {}

 def __delitem__(self, key):
 source, target = key

 # TODO: Refactor this to not have duplicate code.
 self._in_edges[target].remove(source)
 if not self._in_edges[target]:
 del self._in_edges[target]

 self._out_edges[source].remove(target)
 if not self._out_edges[source]:
 del self._out_edges[source]

 del self._flows[key]

 def __getitem__(self, key):
 return self._flows.__getitem__(key)

 def __setitem__(self, key, value):
 source, target = key
 # TODO: Refactor this to remove duplicate code.
 self._in_edges[target] = self._in_edges.get(target, WeSe())
 self._in_edges[target].add(source)

 self._out_edges[source] = self._out_edges.get(source, WeSe())
 self._out_edges[source].add(target)

 self._flows.__setitem__(key, value)

 def __call__(self, source=None, target=None):
 if ((source is None) and (target is None)):
 return None
 if (source is None):
 return Inputs(self, target)
 if (target is None):
 return Outputs(self, source)
 return self._flows[source, target]

 def __iter__(self):
 return self._flows.__iter__()

 def __len__(self):
 return self._flows.__len__()

flow = _Edges()

[docs]@total_ordering
class Node:
 """ Represents a Node in an energy system graph.

 Abstract superclass of the two general types of nodes of an energy system
 graph, collecting attributes and operations common to all types of nodes.
 Users should neither instantiate nor subclass this, but use
 :class:`Component`, :class:`Bus` or one of their subclasses instead.

 .. role:: python(code)
 :language: python

 Parameters

 label: `hashable`, optional
 Used as the string representation of this node. If this parameter is
 not an instance of :class:`str` it will be converted to a string and
 the result will be used as this node's :attr:`label`, which should be
 unique with respect to the other nodes in the energy system graph this
 node belongs to. If this parameter is not supplied, the string
 representation of this node will instead be generated based on this
 nodes `class` and `id`.
 inputs: list or dict, optional
 Either a list of this nodes' input nodes or a dictionary mapping input
 nodes to corresponding inflows (i.e. input values).
 outputs: list or dict, optional
 Either a list of this nodes' output nodes or a dictionary mapping
 output nodes to corresponding outflows (i.e. output values).
 flow: function, optional
 A function taking this node and a target node as a parameter (i.e.
 something of the form :python:`def f(self, target)`), returning the
 flow originating from this node into :python:`target`.

 Attributes

 __slots__: str or iterable of str
 See the Python documentation on `__slots__
 <https://docs.python.org/3/reference/datamodel.html#slots>`_ for more
 information.
 """

 # TODO: Doing this _state/__getstate__/__setstate__ dance is
 # necessary to fix issues #186 and #203. But there must be
 # some more elegant solution. So in the long run, either this,
 # or dump/restore should be refactored so that storing the
 # initialization arguments is not necessary.
 # The culprit seems to be that inputs/outputs are actually
 # stored in the `_Edge` class and pickle can't make that jump.
 # But more sophisticated research and minimal test cases are
 # needed to confirm that.

 registry = None
 __slots__ = ["__weakref__", "_label", "_inputs", "_state"]

 def __init__(self, *args, **kwargs):
 self.__setstate__((args, kwargs))
 if __class__.registry is not None:
 __class__.registry.add(self)

 def __getstate__(self):
 return self._state

 def __setstate__(self, state):
 self._state = state
 args, kwargs = state
 for optional in ['label']:
 if optional in kwargs:
 setattr(self, '_' + optional, kwargs[optional])
 for i in kwargs.get('inputs', {}):
 assert isinstance(i, Node), \
 "Input {} of {} not a Node, but a {}."\
 .format(i, self, type(i))
 try:
 flow[i, self] = kwargs['inputs'].get(i)
 except AttributeError:
 flow[i, self] = None
 for o in kwargs.get('outputs', {}):
 assert isinstance(o, Node), \
 "Output {} of {} not a Node, but a {}."\
 .format(o, self, type(o))
 try:
 flow[self, o] = kwargs['outputs'].get(o)
 except AttributeError:
 flow[self, o] = None

 def __eq__(self, other):
 return id(self) == id(other)

 def __lt__(self, other):
 if other is None:
 return False
 return self.label < other.label

 def __hash__(self):
 return hash(self.label)

 def __str__(self):
 return str(self.label)

 @property
 def label(self):
 """ object :
 If this node was given a `label` on construction, this
 attribute holds the actual object passed as a parameter. Otherwise
 :py:`node.label` is a synonym for :py:`str(node)`.
 """
 return (self._label if hasattr(self, "_label")
 else "<{} #0x{:x}>".format(type(self).__name__, id(self)))

 @property
 def inputs(self):
 """ dict :
 Dictionary mapping input :class:`Nodes <Node>` :obj:`n` to flows from
 :obj:`n` into :obj:`self`.
 """
 return Inputs(flow, self)

 @property
 def outputs(self):
 """ dict :
 Dictionary mapping output :class:`Nodes <Node>` :obj:`n` to flows from
 :obj:`self` into :obj:`n`.
 """
 return Outputs(flow, self)

[docs]class Bus(Node):
 pass

[docs]class Component(Node):
 pass

[docs]class Sink(Component):
 pass

[docs]class Source(Component):
 pass

[docs]class Transformer(Component):
 pass

TODO: Adhere to PEP 0257 by listing the exported classes with a short
summary.
[docs]class Entity:
 r"""
 The most abstract type of vertex in an energy system graph. Since each
 entity in an energy system has to be uniquely identifiable and
 connected (either via input or via output) to at least one other
 entity, these properties are collected here so that they are shared
 with descendant classes.

 Parameters

 uid : string or tuple
 Unique component identifier of the entity.
 inputs : list
 List of Entities acting as input to this Entity.
 outputs : list
 List of Entities acting as output from this Entity.
 geo_data : shapely.geometry object
 Geo-spatial data with informations for location/region-shape. The
 geometry can be a polygon/multi-polygon for regions, a line fore
 transport objects or a point for objects such as transformer sources.

 Attributes

 registry: :class:`EnergySystem <oemof.core.energy_system.EnergySystem>`
 The central registry keeping track of all :class:`Node's <Node>`
 created. If this is `None`, :class:`Node` instances are not
 kept track of. Assign an :class:`EnergySystem
 <oemof.core.energy_system.EnergySystem>` to this attribute to have it
 become the a :class:`node <Node>` registry, i.e. all :class:`nodes
 <Node>` created are added to its :attr:`nodes
 <oemof.core.energy_system.EnergySystem.nodes>`
 property on construction.
 """
 optimization_options = {}

 registry = None

 def __init__(self, **kwargs):
 # TODO: @Günni:
 # add default argument values to docstrings (if it's possible).
 self.uid = kwargs["uid"]
 self.inputs = kwargs.get("inputs", [])
 self.outputs = kwargs.get("outputs", [])
 for e_in in self.inputs:
 if self not in e_in.outputs:
 e_in.outputs.append(self)
 for e_out in self.outputs:
 if self not in e_out.inputs:
 e_out.inputs.append(self)
 self.geo_data = kwargs.get("geo_data", None)
 self.regions = []
 self.add_regions(kwargs.get('regions', []))
 if __class__.registry is not None:
 __class__.registry.add(self)

 # TODO: @Gunni Yupp! Add docstring.
[docs] def add_regions(self, regions):
 """Add regions to self.regions
 """
 self.regions.extend(regions)
 for region in regions:
 if self not in region.entities:
 region.entities.append(self)

 def __str__(self):
 # TODO: @Günni: Unused privat method. No Docstring.
 return "<{0} #{1}>".format(type(self).__name__, self.uid)

[docs]@contextmanager
def registry_changed_to(r):
 """ Override registry during execution of a block and restore it afterwards.
 """
 backup = Node.registry
 Node.registry = None
 yield
 Node.registry = backup

[docs]def temporarily_modifies_registry(function):
 """ Backup registry before and restore it after execution of `function`.
 """
 def result(*xs, **ks):
 with registry_disabled():
 return f(*xs, **ks)
 return result

 Source code for oemof.solph.plumbing

-*- coding: utf-8 -*-

"""Plumbing stuff.

This file is part of project oemof (github.com/oemof/oemof). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/solph/plumbing.py

SPDX-License-Identifier: GPL-3.0-or-later
"""

from collections import abc, UserList
from itertools import repeat

[docs]def sequence(sequence_or_scalar):
 """ Tests if an object is sequence (except string) or scalar and returns
 a the original sequence if object is a sequence and a 'emulated' sequence
 object of class _Sequence if object is a scalar or string.

 Parameters

 sequence_or_scalar : array-like, None, int, float

 Examples

 >>> sequence([1,2])
 [1, 2]

 >>> x = sequence(10)
 >>> x[0]
 10

 >>> x[10]
 10
 >>> print(x)
 [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

 """
 if (isinstance(sequence_or_scalar, abc.Iterable) and not
 isinstance(sequence_or_scalar, str)):
 return sequence_or_scalar
 else:
 return _Sequence(default=sequence_or_scalar)

class _Sequence(UserList):
 """ Emulates a list whose length is not known in advance.

 Parameters

 source:
 default:

 Examples

 >>> s = _Sequence(default=42)
 >>> len(s)
 0
 >>> s[2]
 42
 >>> len(s)
 3
 >>> s[0] = 23
 >>> s
 [23, 42, 42]

 """
 def __init__(self, *args, **kwargs):
 self.default = kwargs["default"]
 self.default_changed = False
 self.highest_index = -1
 super().__init__(*args)

 def __getitem__(self, key):
 self.highest_index = max(self.highest_index, key)
 if not self.default_changed:
 return self.default
 try:
 return self.data[key]
 except IndexError:
 self.data.extend([self.default] * (key - len(self.data) + 1))
 return self.data[key]

 def __setitem__(self, key, value):
 if not self.default_changed:
 self.default_changed = True
 self.__init_list()
 try:
 self.data[key] = value
 except IndexError:
 self.data.extend([self.default] * (key - len(self.data) + 1))
 self.data[key] = value

 def __init_list(self):
 self.data = [self.default] * (self.highest_index + 1)

 def __repr__(self):
 if self.default_changed:
 return super(_Sequence, self).__repr__()
 return str([i for i in self])

 def __len__(self):
 return max(len(self.data), self.highest_index + 1)

 def __iter__(self):
 if self.default_changed:
 return super(_Sequence, self).__iter__()
 else:
 return repeat(self.default, self.highest_index + 1)

 Source code for oemof.tools.economics

-*- coding: utf-8 -*-

"""Module to collect useful functions for economic calculation.

This file is part of project oemof (github.com/oemof/oemof). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/economics.py

SPDX-License-Identifier: GPL-3.0-or-later
"""

[docs]def annuity(capex, n, wacc):
 """Calculate the annuity.

 annuity = capex * (wacc * (1 + wacc) ** n) / ((1 + wacc) ** n - 1)

 Parameters

 capex : float
 Capital expenditure (NPV of investment)
 n : int
 Number of years that the investment is used (economic lifetime)
 wacc : float
 Weighted average cost of capital

 Returns

 float : annuity

 """
 return capex * (wacc * (1 + wacc) ** n) / ((1 + wacc) ** n - 1)

 Source code for oemof.tools.helpers

-*- coding: utf-8 -*-
"""
This is a collection of helper functions which work on their own and can be
used by various classes. If there are too many helper-functions, they will
be sorted in different modules.

This file is part of project oemof (github.com/oemof/oemof). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/helpers.py

SPDX-License-Identifier: GPL-3.0-or-later
"""

import os
from collections import MutableMapping

[docs]def get_basic_path():
 """Returns the basic oemof path and creates it if necessary.
 The basic path is the '.oemof' folder in the $HOME directory.
 """
 basicpath = os.path.join(os.path.expanduser('~'), '.oemof')
 if not os.path.isdir(basicpath):
 os.mkdir(basicpath)
 return basicpath

[docs]def extend_basic_path(subfolder):
 """Returns a path based on the basic oemof path and creates it if
 necessary. The subfolder is the name of the path extension.
 """
 extended_path = os.path.join(get_basic_path(), subfolder)
 if not os.path.isdir(extended_path):
 os.mkdir(extended_path)
 return extended_path

[docs]def flatten(d, parent_key='', sep='_'):
 """
 Flatten dictionary by compressing keys.

 See: https://stackoverflow.com/questions/6027558/
 flatten-nested-python-dictionaries-compressing-keys

 d : dictionary
 sep : separator for flattening keys

 Returns

 dict
 """
 items = []
 for k, v in d.items():
 new_key = parent_key + sep + str(k) if parent_key else str(k)
 if isinstance(v, MutableMapping):
 items.extend(flatten(v, new_key, sep=sep).items())
 else:
 items.append((new_key, v))
 return dict(items)

 Source code for oemof.tools.logger

-*- coding: utf-8

"""Helpers to log your modeling process with oemof.

This file is part of project oemof (github.com/oemof/oemof). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/tools/logger.py

SPDX-License-Identifier: GPL-3.0-or-later
"""

import os
import logging
from logging import handlers
import sys
from oemof.tools import helpers
import oemof

[docs]def define_logging(logpath=None, logfile='oemof.log', file_format=None,
 screen_format=None, file_datefmt=None, screen_datefmt=None,
 screen_level=logging.INFO, file_level=logging.DEBUG,
 log_version=True, log_path=True, timed_rotating=None):

 r"""Initialise customisable logger.

 Parameters

 logfile : str
 Name of the log file, default: oemof.log
 logpath : str
 The path for log files. By default a ".oemof' folder is created in your
 home directory with subfolder called 'log_files'.
 file_format : str
 Format of the file output.
 Default: "%(asctime)s - %(levelname)s - %(module)s - %(message)s"
 screen_format : str
 Format of the screen output.
 Default: "%(asctime)s-%(levelname)s-%(message)s"
 file_datefmt : str
 Format of the datetime in the file output. Default: None
 screen_datefmt : str
 Format of the datetime in the screen output. Default: "%H:%M:%S"
 screen_level : int
 Level of logging to stdout. Default: 20 (logging.INFO)
 file_level : int
 Level of logging to file. Default: 10 (logging.DEBUG)
 log_version : boolean
 If True the actual version or commit is logged while initialising the
 logger.
 log_path : boolean
 If True the used file path is logged while initialising the logger.
 timed_rotating : dict
 Option to pass parameters to the TimedRotatingFileHandler.

 Returns

 str : Place where the log file is stored.

 Notes

 By default the INFO level is printed on the screen and the DEBUG level
 in a file, but you can easily configure the logger.
 Every module that wants to create logging messages has to import the
 logging module. The oemof logger module has to be imported once to
 initialise it.

 Examples

 To define the default logger you have to import the python logging
 library and this function. The first logging message should be the
 path where the log file is saved to.

 >>> import logging
 >>> from oemof.tools import logger
 >>> mypath = logger.define_logging(
 ... log_path=True, log_version=True, timed_rotating={'backupCount': 4},
 ... screen_level=logging.ERROR, screen_datefmt = "no_date")
 >>> mypath[-9:]
 'oemof.log'
 >>> logging.debug("Hallo")
 """

 if logpath is None:
 logpath = helpers.extend_basic_path('log_files')

 file = os.path.join(logpath, logfile)

 log = logging.getLogger('')

 # Remove existing handlers to avoid interference.
 log.handlers = []
 log.setLevel(logging.DEBUG)

 if file_format is None:
 file_format = (
 "%(asctime)s - %(levelname)s - %(module)s - %(message)s")
 file_formatter = logging.Formatter(file_format, file_datefmt)

 if screen_format is None:
 screen_format = "%(asctime)s-%(levelname)s-%(message)s"
 if screen_datefmt is None:
 screen_datefmt = "%H:%M:%S"
 screen_formatter = logging.Formatter(screen_format, screen_datefmt)

 tmp_formatter = logging.Formatter("%(message)s")

 ch = logging.StreamHandler(sys.stdout)
 ch.setFormatter(screen_formatter)
 ch.setLevel(screen_level)
 log.addHandler(ch)

 timed_rotating_p = {
 'when': 'midnight',
 'backupCount': 10}

 if timed_rotating is not None:
 timed_rotating_p.update(timed_rotating)

 fh = handlers.TimedRotatingFileHandler(file, **timed_rotating_p)
 fh.setFormatter(tmp_formatter)
 fh.setLevel(file_level)
 log.addHandler(fh)

 logging.debug("**")
 fh.setFormatter(file_formatter)
 if log_path:
 logging.info("Path for logging: {0}".format(file))

 if log_version:
 logging.info("Used oemof version: {0}".format(get_version()))
 return file

[docs]def get_version():
 """Returns a string part of the used version. If the commit and the branch
 is available the commit and the branch will be returned otherwise the
 version number.

 >>> from oemof.tools import logger
 >>> v = logger.get_version()
 >>> type(v)
 <class 'str'>
 """
 try:
 v = check_git_branch()
 msg_part = "{0}@{1}".format(v[0], v[1])
 except FileNotFoundError:
 msg_part = "{0}".format(check_version())
 return msg_part

[docs]def check_version():
 """Returns the actual version number of the used oemof version.

 >>> from oemof.tools import logger
 >>> v = logger.check_version()
 >>> int(v.split('.')[0])
 0
 """
 try:
 version = oemof.__version__
 except AttributeError:
 version = 'No version found due to internal error.'
 return version

[docs]def check_git_branch():
 """Passes the used branch and commit to the logger

 >>> from oemof.tools import logger
 >>> try:
 ... v = logger.check_git_branch()
 ... except FileNotFoundError:
 ... v = ('abcdefgh', 'branch')
 >>> type(v)
 <class 'tuple'>
 >>> type(v[0])
 <class 'str'>
 >>> len(v[0])
 8
 """

 path = os.path.join(os.path.dirname(
 os.path.realpath(__file__)), os.pardir,
 os.pardir, '.git')

 # Reads the name of the branch
 f_branch = os.path.join(path, 'HEAD')
 f = open(f_branch, "r")
 first_line = f.readlines(1)
 name_full = first_line[0].replace("\n", "")
 name_branch = name_full.replace("ref: refs/heads/", "")
 f.close()

 # Reads the code of the last commit used
 f_commit = os.path.join(path, 'refs', 'heads', name_branch)
 f = open(f_commit, "r")
 last_commit = f.read(8)
 f.close()

 return last_commit, name_branch

 _static/up.png

_static/up-pressed.png

_images/math/09fdd1719430e7659b402217066c26a9b0af9633.png

_images/math/316612eb2ec226c0fcf0af6c361719d61e8aa2aa.png

nav.xhtml

 Table of Contents

 		
 Welcome to oemof’s documentation!

 		
 Getting started

 		
 Documentation

 		
 Installing oemof

 		
 Structure of the oemof cosmos

 		
 Examples

 		
 Got further questions on using oemof?

 		
 Join the developers!

 		
 Keep in touch

 		
 Citing oemof

 		
 License

 		
 About oemof

 		
 The idea of an open framework

 		
 Application Examples

 		
 Why are we developing oemof?

 		
 Why should I contribute?

 		
 Join oemof with your own approach or project

 		
 Installation and setup

 		
 Linux

 		
 Having Python 3 installed

 		
 Using Linux repositories to install Python

 		
 Using Virtualenv (community driven)

 		
 Using Anaconda

 		
 Solver

 		
 Windows

 		
 Having Python 3 installed

 		
 Using WinPython (community driven)

 		
 Using Anaconda

 		
 Windows Solver

 		
 Mac OSX

 		
 Run the installation_test file

 		
 Using oemof

 		
 oemof-network

 		
 oemof-solph

 		
 oemof-outputlib

 		
 feedinlib

 		
 demandlib

 		
 Developing oemof

 		
 Install the developer version

 		
 Contribute to the documentation

 		
 Contribute to new components

 		
 Collaboration with pull requests

 		
 How to create a pull request

 		
 Generally the following steps are required when changing, adding or removing code

 		
 Tests

 		
 Issue-Management

 		
 Style guidelines

 		
 Docstrings

 		
 Code commenting

 		
 PEP8 (Python Style Guide)

 		
 Quoted strings

 		
 Naming Conventions

 		
 Using git

 		
 Branching model

 		
 Commit message

 		
 Documentation

 		
 What’s New

 		
 v0.2.2 (July 1, 2018)

 		
 API changes

 		
 New features

 		
 New components

 		
 Documentation

 		
 Known issues

 		
 Bug fixes

 		
 Testing

 		
 Other changes

 		
 Contributors

 		
 v0.2.1 (March 19, 2018)

 		
 API changes

 		
 New features

 		
 Documentation

 		
 Known issues

 		
 Bug fixes

 		
 Testing

 		
 Other changes

 		
 Contributors

 		
 v0.2.0 (January 12, 2018)

 		
 API changes

 		
 New features

 		
 New components

 		
 Documentation

 		
 Known issues

 		
 Bug fixes

 		
 Testing

 		
 Other changes

 		
 Contributors

 		
 v0.1.4 (March 28, 2017)

 		
 Bug fixes

 		
 Documentation

 		
 Contributors

 		
 v0.1.2 (March 27, 2017)

 		
 New features

 		
 Documentation

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.1.1 (November 2, 2016)

 		
 Bug fixes

 		
 Contributors

 		
 v0.1.0 (November 1, 2016)

 		
 API changes

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.7 (May 4, 2016)

 		
 Bug fixes

 		
 v0.0.6 (April 29, 2016)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.5 (April 1, 2016)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.4 (March 03, 2016)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.3 (January 29, 2016)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.2 (December 22, 2015)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.1 (November 25, 2015)

 		
 oemof-network

 		
 Graph

 		
 oemof-solph

 		
 How can I use solph?

 		
 Set up an energy system

 		
 Add components to the energy system

 		
 Optimise your energy system

 		
 Analysing your results

 		
 Solph components

 		
 Sink (basic)

 		
 Source (basic)

 		
 Transformer (basic)

 		
 ExtractionTurbineCHP (component)

 		
 GenericCAES (component)

 		
 GenericCHP (component)

 		
 GenericStorage (component)

 		
 ElectricalLine (custom)

 		
 Link (custom)

 		
 Using the investment mode

 		
 Mixed Integer (Linear) Problems

 		
 Adding additional constraints

 		
 The Grouping module (Sets)

 		
 Using the Excel (csv) reader

 		
 Solph Examples

 		
 oemof-outputlib

 		
 Collecting results

 		
 oemof-tools

 		
 Economics

 		
 Helpers

 		
 Logger

 		
 API

 		
 oemof

 		
 oemof package

 		
 oemof package

 		
 Subpackages

 		
 Submodules

 		
 oemof.energy_system module

 		
 oemof.graph module

 		
 oemof.groupings module

 		
 oemof.network module

 		
 Module contents

 		
 oemof.outputlib package

 		
 Submodules

 		
 oemof.outputlib.processing module

 		
 oemof.outputlib.views module

 		
 Module contents

 		
 oemof.solph package

 		
 Submodules

 		
 oemof.solph.blocks module

 		
 oemof.solph.components module

 		
 oemof.solph.constraints module

 		
 oemof.solph.custom module

 		
 oemof.solph.groupings module

 		
 oemof.solph.models module

 		
 oemof.solph.network module

 		
 oemof.solph.options module

 		
 oemof.solph.plumbing module

 		
 Module contents

 		
 oemof.tools package

 		
 Submodules

 		
 oemof.tools.console_scripts module

 		
 oemof.tools.datapackage module

 		
 oemof.tools.economics module

 		
 oemof.tools.helpers module

 		
 oemof.tools.logger module

 		
 Module contents

_images/math/4bea5d4df598d03b9786d3a0f296b6388bb6ad15.png
Ifth,maxExtr

_images/math/5ec053cf70dc1c98cc297322250569eda193e7a4.png

_images/math/32f15b0a15dce5c4865b3aceebe5c6fc99c27bde.png
TetwoEztr
 MelmazEstr

Tth.mazExtr

_images/math/410a9d0df9c135dd73b269cba7ef04dcfd932b1f.png

_images/math/a82a60dc2fee751e49d2926bb359606f85c725b6.png
g = Jetoliztr — Tel,mazBrty
Tth.mazExtr

_images/math/d9d601c9b208110b7397f2b232662de6179cf253.png

_images/math/9821ac587c6761ddce068713fb035c5812a7d9fd.png
Hel maxExtr

_images/math/a5a107c87fd703d8a462b4e4835a07ec7ac47e31.png
Hel woFE xtr

_images/math/e11f2701c4a39c7fe543a6c4150b421d50f1c159.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

