

Welcome to oemof’s documentation!

	oemof.solph
	Introduction

	Documentation

	Installation
	Installing a solver

	Installation test

	Contributing

	Citing

	Examples

	License

	User’s guide
	How can I use solph?
	Handling of Warnings

	Set up an energy system

	Add components to the energy system

	Optimise your energy system

	Analysing your results

	Solph components
	Sink (basic)

	Source (basic)

	Transformer (basic)

	ExtractionTurbineCHP (component)

	GenericCHP (component)

	GenericStorage (component)

	OffsetTransformer (component)

	ElectricalLine (experimental)

	GenericCAES (experimental)

	Link (experimental)

	SinkDSM (experimental)

	Investment optimisation

	Mixed Integer (Linear) Problems
	Dispatch Optimization

	Combination of Dispatch and Investment Optimisation

	Adding additional constraints

	The Grouping module (Sets)

	Using the Excel (csv) reader

	Handling Results
	Collecting results

	General approach

	Easy access

	API Reference
	oemof.solph.buses.Bus

	oemof.solph.components
	Sink

	Source

	Transformer

	extractionTurbineCHP

	GenericCHP

	GenericStorage

	OffsetTransformer

	experimental.ElectricalLine

	experimental.GenericCAES

	experimental.Link

	experimental.PiecewiseLinearTransformer

	experimental.SinkDSM

	oemof.solph.console_scripts

	oemof.solph.constraints

	oemof.solph.EnergySystem

	oemof.solph.Flow
	Flow

	SimpleFlow

	InvestmentFlow

	NonConvexFlow

	InvestNonConvexFlow

	oemof.solph.groupings

	oemof.solph.helpers

	oemof.solph.models

	oemof.solph.options

	oemof.solph.plumbing

	oemof.solph.processing

	oemof.solph.views

	Examples
	Basic example
	General description

	Data

	Installation requirements

	License

	Basic Time Index
	General description

	Installation requirements

	License

	Activity costs
	General description

	Installation requirements

	License

	Balanced and unbalanced storage
	General description

	Installation requirements

	License

	Electrical
	Linear optimal power flow (lopf)

	Transshipment

	Emission constraint
	General description

	Installation requirements

	License

	Flexible modelling
	Add constraints

	Flow count limit
	General description

	Installation requirements

	License

	Flow gradient
	General description

	Installation requirements

	License

	Generic Invest limit
	Installation requirements

	License

	Investment with minimal invest
	Installation requirements

	License

	Minimal and maximal runtime
	General description

	Installation requirements

	License

	Simple heat and power dispatch
	General description

	Data

	Installation requirements

	License

	Spreadsheet (Excel) Reader
	General description

	Data

	Installation requirements

	License

	Start and shutdown costs
	General description

	Installation requirements

	License

	Storage investment
	Optimize all technologies

	Optimize only gas and storage

	Optimize only storage with fossil share

	Optimize all technologies with fossil share

	Tuple as label
	General description

	Data

	Installation requirements

	License

	Variable CHP
	General description

	Installation requirements

	License

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development
	Pull Request Guidelines

	Tests

	Tips

	Authors

	Changelog
	v0.4.5 (January 23th, 2023)
	New features

	Bug fixes

	Testing

	Contributors

	v0.4.4 (June 1st, 2021)
	API changes

	New components/constraints

	Bug fixes

	Other changes

	Contributors

	v0.4.2 (May, 11, 2021)

	v0.4.1 (June 24, 2020)
	Bug fixes

	Known issues

	Contributors

	v0.4.0 (June 6, 2020)
	API changes

	New features

	New components/constraints

	Documentation

	Known issues

	Testing

	Other changes

	Contributors

	v0.3.2 (November 29, 2019)
	New features

	New components

	Documentation

	Other changes

	Contributors

	v0.3.1 (June 11, 2019)
	Other changes

	Contributors

	v0.3.0 (June 5, 2019)
	API changes

	New features

	Documentation

	Bug fixes

	Testing

	Contributors

	v0.2.3 (November 21, 2018)
	Bug fixes

	Contributors

	v0.2.2 (July 1, 2018)
	API changes

	New features

	New components

	Documentation

	Known issues

	Bug fixes

	Testing

	Other changes

	Contributors

	v0.2.1 (March 19, 2018)
	API changes

	New features

	Documentation

	Known issues

	Bug fixes

	Testing

	Other changes

	Contributors

	v0.2.0 (January 12, 2018)
	API changes

	New features

	New components

	Documentation

	Known issues

	Bug fixes

	Testing

	Other changes

	Contributors

	v0.1.4 (March 28, 2017)
	Bug fixes

	Documentation

	Contributors

	v0.1.2 (March 27, 2017)
	New features

	Documentation

	Bug fixes

	Other changes

	Contributors

	v0.1.1 (November 2, 2016)
	Bug fixes

	Contributors

	v0.1.0 (November 1, 2016)
	API changes

	New features

	Documentation

	Testing

	Bug fixes

	Other changes

	Contributors

	v0.0.7 (May 4, 2016)
	Bug fixes

	v0.0.6 (April 29, 2016)
	New features

	Documentation

	Testing

	Bug fixes

	Other changes

	Contributors

	v0.0.5 (April 1, 2016)
	New features

	Documentation

	Testing

	Bug fixes

	Other changes

	Contributors

	v0.0.4 (March 03, 2016)
	New features

	Documentation

	Testing

	Bug fixes

	Other changes

	Contributors

	v0.0.3 (January 29, 2016)
	New features

	Documentation

	Testing

	Bug fixes

	Other changes

	Contributors

	v0.0.2 (December 22, 2015)
	New features

	Documentation

	Testing

	Bug fixes

	Other changes

	Contributors

	v0.0.1 (November 25, 2015)

	oemof.solph Logo
	Full logo

	Compact version

	Logo without text

	Icon

Indices and tables

	Index

	Module Index

	Search Page

 [image: tox-pytest] [https://github.com/oemof/oemof-solph/actions?query=workflow%3A%22tox+checks%22] [image: tox-checks] [https://github.com/oemof/oemof-solph/actions?query=workflow%3A%22tox+checks%22] [image: AppVeyor Build Status] [https://ci.appveyor.com/project/oemof-developer/oemof-solph] [image: Coverage Status] [https://coveralls.io/github/oemof/oemof-solph] [image: Coverage Status] [https://codecov.io/gh/oemof/oemof-solph]

[image: Scrutinizer Status] [https://scrutinizer-ci.com/g/oemof/oemof-solph/] [image: Codacy Code Quality Status] [https://app.codacy.com/gh/oemof/oemof-solph/dashboard] [image: CodeClimate Quality Status] [https://codeclimate.com/github/oemof/oemof-solph] |requires|

[image: PyPI Wheel] [https://pypi.org/project/oemof.solph] [image: packaging] [https://github.com/oemof/oemof-solph/actions?query=workflow%3Apackaging] [image: Supported versions] [https://pypi.org/project/oemof.solph]

[image: Documentation Status] [https://readthedocs.org/projects/oemof-solph] [image: Zenodo DOI] [https://doi.org/10.5281/zenodo.596235]

[image: PyPI Package latest release] [https://pypi.org/project/oemof.solph] [image: Commits since latest release] [https://github.com/oemof/oemof-solph/compare/v0.5.0...dev] |meeting| [image: matrix-chat] [https://matrix.to/#/#oemof:matrix.org]

[image: _images/logo_oemof_solph_FULL1.svg]

oemof.solph

A model generator for energy system modelling and optimisation (LP/MILP)

	Introduction

	Documentation

	Installation

	Installing a solver

	Installation test

	Contributing

	Citing

	Examples

	License

Introduction

The oemof.solph package is part of the
Open energy modelling framework (oemof) [https://github.com/oemof/oemof].
This an organisational framework to bundle tools for energy (system) modelling.
oemof-solph is a model generator for energy system modelling and optimisation.

The oemof.solph package is very often called just oemof as it was part of the
oemof meta package. Now you need to install oemof.solph instead of oemof, but
everything else is still the same.
(Note: Since the oemof package refers to legacy versions before v0.4,
it is not possible to install both, oemof and oemof.solph, at the same time.
Just use pip install oemof.solph.)

Everybody is welcome to use and/or develop oemof.solph.
Read our contribution [https://oemof.readthedocs.io/en/latest/contributing.html] section.

Contribution is already possible on a low level by simply fixing typos in
oemof’s documentation or rephrasing sections which are unclear.
If you want to support us that way please fork the oemof repository to your own
github account and make changes as described in the github guidelines [https://docs.github.com/en/get-started/quickstart/hello-world]

If you have questions regarding the use of oemof you can visit the forum at openmod-initiative.org [https://forum.openmod-initiative.org/tags/c/qa/oemof] and open a new thread if your questions hasn’t been already answered.

Keep in touch! - You can become a watcher at our github site [https://github.com/oemof/oemof],
but this will bring you quite a few mails and might be more interesting for developers.
If you just want to get the latest news, like when is the next oemof meeting,
you can follow our news-blog at oemof.org [https://oemof.org/].

Documentation

The oemof.solph documentation [https://oemof-solph.readthedocs.io/] is powered by readthedocs. Use the project site [https://readthedocs.org/projects/oemof] of oemof.solph to choose the version of the documentation. Go to the download page [https://readthedocs.org/projects/oemof/downloads/] to download different versions and formats (pdf, html, epub) of the documentation.

Installation

If you have a working Python3 environment, use pypi to install the latest oemof version. Python >= 3.6 is recommended. Lower versions may work but are not tested.

pip install oemof.solph

If you want to use the latest features, you might want to install the developer version. The developer version is not recommended for productive use:

pip install https://github.com/oemof/oemof-solph/archive/dev.zip

For running an oemof-solph optimisation model, you need to install a solver.
Following you will find guidelines for the installation process for different operation systems.

Installing a solver

There are various commercial and open-source solvers that can be used with oemof.
There are two common OpenSource solvers available (CBC, GLPK), while oemof recommends CBC (Coin-or branch and cut).
But sometimes its worth comparing the results of different solvers.
Other commercial solvers like Gurobi or Cplex can be used as well.
Have a look at the pyomo docs [https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html#supported-solvers] to learn about which solvers are supported.

Check the solver installation by executing the test_installation example below (see section Installation Test).

Linux

To install the solvers have a look at the package repository of your Linux distribution or search for precompiled packages. GLPK and CBC ares available at Debian, Feodora, Ubuntu and others.

Windows

	Download CBC (64 [https://ampl.com/dl/open/cbc/cbc-win64.zip] or 32 [https://ampl.com/dl/open/cbc/cbc-win32.zip] bit)

	Download GLPK (64/32 bit) [https://sourceforge.net/projects/winglpk/]

	Unpack CBC/GLPK to any folder (e.g. C:/Users/Somebody/my_programs)

	Add the path of the executable files of both solvers to the PATH variable using this tutorial [https://www.computerhope.com/issues/ch000549.htm]

	Restart Windows

Check the solver installation by executing the test_installation example (see the Installation test section).

Mac OSX

Please follow the installation instructions on the respective homepages for details.

CBC-solver: https://projects.coin-or.org/Cbc

GLPK-solver: http://arnab-deka.com/posts/2010/02/installing-glpk-on-a-mac/

If you install the CBC solver via brew (highly recommended), it should work without additional configuration.

conda

Provided you are using a Linux or MacOS, the CBC-solver can also be installed in a conda environment. Please note, that it is highly recomended to use pip after conda [https://www.anaconda.com/blog/using-pip-in-a-conda-environment], so:

conda install -c conda-forge coincbc
pip install oemof.solph

Installation test

Test the installation and the installed solver by running the installation test
in your virtual environment:

oemof_installation_test

If the installation was successful, you will receive something like this:

Solver installed with oemof:
glpk: working
cplex: not working
cbc: working
gurobi: not working

oemof.solph successfully installed.

as an output.

Contributing

A warm welcome to all who want to join the developers and contribute to
oemof.solph.

Information on the details and how to approach us can be found
in the oemof documentation [https://oemof.readthedocs.io/en/latest/contributing.html] .

Citing

For explicitly citing solph, you might want to refer to
DOI:10.1016/j.simpa.2020.100028 [https://doi.org/10.1016/j.simpa.2020.100028],
which gives an overview over the capabilities of solph.
The core ideas of oemof as a whole are described in
DOI:10.1016/j.esr.2018.07.001 [https://doi.org/10.1016/j.esr.2018.07.001]
(preprint at arXiv:1808.0807 [https://arxiv.org/abs/1808.08070v1]).
To allow citing specific versions, we use the zenodo project to get a DOI for each version.

Examples

The linkage of specific modules of the various packages is called an
application (app) and depicts for example a concrete energy system model.
You can find a large variety of helpful examples in oemof’s example repository [https://github.com/oemof/oemof-examples] on github to download or clone.
The examples show optimisations of different energy systems and are supposed
to help new users to understand the framework’s structure.
There is some elaboration on the examples in the respective repository.
The repository has sections for each major release.

You are welcome to contribute your own examples via a pull request [https://github.com/oemof/oemof-examples/pulls] or by sending us an e-mail (see here [https://oemof.org/contact/] for contact information).

License

Copyright (c) 2022 oemof developer group

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

User’s guide

Solph is an oemof-package, designed to create and solve linear or mixed-integer linear optimization problems. The package is based on pyomo. To create an energy system model generic and specific components are available. To get started with solph, checkout the examples in the Examples section.

This User’s guide provides a user-friendly introduction into oemof-solph,
which includes small examples and nice illustrations.
However, the functionality of oemof-solph go beyond the content of this User’s guide section.
So, if you want to know all details of a certain component or a function,
please go the API Reference. There, you will find
a detailed and complete description of all oemof-solph modules.

	How can I use solph?

	Handling of Warnings

	Set up an energy system

	Add components to the energy system

	Optimise your energy system

	Analysing your results

	Solph components

	Sink (basic)

	Source (basic)

	Transformer (basic)

	ExtractionTurbineCHP (component)

	GenericCHP (component)

	GenericStorage (component)

	OffsetTransformer (component)

	ElectricalLine (experimental)

	GenericCAES (experimental)

	Link (experimental)

	SinkDSM (experimental)

	Investment optimisation

	Mixed Integer (Linear) Problems

	Dispatch Optimization

	Combination of Dispatch and Investment Optimisation

	Adding additional constraints

	The Grouping module (Sets)

	Using the Excel (csv) reader

	Handling Results

	Collecting results

	General approach

	Easy access

How can I use solph?

To use solph you have to install oemof and at least one solver (see Installation), which can be used together with pyomo (e.g. CBC, GLPK, Gurobi, Cplex). See the pyomo installation guide [https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html#supported-solvers] for all supported solver.
You can test it by executing one of the existing examples (see Examples, or directly oemof’s example repository [https://github.com/oemof/oemof-examples]). Be aware that the examples require the CBC solver but you can change the solver name in the example files to your solver.

Once the example work you are close to your first energy model.

Handling of Warnings

The solph library is designed to be as generic as possible to make it possible
to use it in different use cases. This concept makes it difficult to raise
Error or Warnings because sometimes untypical combinations of parameters are
allowed even though they might be wrong in over 99% of the use cases.

Therefore, a SuspiciousUsageWarning was introduced. This warning will warn you
if you do something untypical. If you are sure that you know what you are doing
you can switch the warning off.

See the debugging module of oemof-tools [https://oemof-tools.readthedocs.io/en/latest/usage.html#debugging] for more
information.

Set up an energy system

In most cases an EnergySystem object is defined when we start to build up an energy system model. The EnergySystem object will be the main container for the model.

The model time is defined by the number of intervals and the length of intervals. The length of each interval does not have to be the same. This can be defined in two ways:

	Define the length of each interval in an array/Series where the number of the elements is the number of intervals.

	Define a pandas.DatetimeIndex with all time steps that encloses an interval. Be aware that you have to define n+1 time points to get n intervals. For non-leap year with hourly values that means 8761 time points to get 8760 interval e.g. 2018-01-01 00:00 to 2019-01-01 00:00.

The index will also be used for the results. For a numeric index the resulting time series will indexed with a numeric index starting with 0.

One can use the function
_energy_system/create_year_index() to create an equidistant datetime index. By default the function creates an hourly index for one year, so online the year has to be passed to the function. But it is also possible to change the length of the interval to quarter hours etc.. The default number of intervals is the number needed to cover the given year but the value can be overwritten by the user.

It is also possible to define the datetime index using pandas. See pandas date_range guide [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.date_range.html] for more information.

Both code blocks will create an hourly datetime index for 2011:

from oemof.solph import create_year_index
my_index = create_year_index(2011)

import pandas as pd
my_index = pd.date_range('1/1/2011', periods=8761, freq='H')

This index can be used to define the EnergySystem:

import oemof.solph as solph
my_energysystem = solph.EnergySystem(timeindex=my_index)

Now you can start to add the components of the network.

Add components to the energy system

After defining an instance of the EnergySystem class you have to add all nodes you define in the following to your EnergySystem.

Basically, there are two types of nodes - components and buses. Every Component has to be connected with one or more buses. The connection between a component and a bus is the flow.

All solph components can be used to set up an energy system model but you should read the documentation of each component to learn about usage and restrictions. For example it is not possible to combine every component with every flow. Furthermore, you can add your own components in your application (see below) but we would be pleased to integrate them into solph if they are of general interest (see Feature requests and feedback).

An example of a simple energy system shows the usage of the nodes for
real world representations:

[image: alternate text]

The figure shows a simple energy system using the four basic network classes and the Bus class.
If you remove the transmission line (transport 1 and transport 2) you get two systems but they are still one energy system in terms of solph and will be optimised at once.

There are different ways to add components to an energy system. The following line adds a bus object to the energy system defined above.

my_energysystem.add(solph.buses.Bus())

It is also possible to assign the bus to a variable and add it afterwards. In that case it is easy to add as many objects as you like.

my_bus1 = solph.buses.Bus()
my_bus2 = solph.buses.Bus()
my_energysystem.add(my_bus1, my_bus2)

Therefore it is also possible to add lists or dictionaries with components but you have to dissolve them.

add a list
my_energysystem.add(*my_list)

add a dictionary
my_energysystem.add(*my_dictionary.values())

Bus

All flows into and out of a bus are balanced. Therefore an instance of the Bus class represents a grid or network without losses. To define an instance of a Bus only a unique label is necessary. If you do not set a label a random label is used but this makes it difficult to get the results later on.

To make it easier to connect the bus to a component you can optionally assign a variable for later use.

solph.buses.Bus(label='natural_gas')
electricity_bus = solph.buses.Bus(label='electricity')

Note

See the Bus class for all parameters and the mathematical background.

Flow

The flow class has to be used to connect. An instance of the Flow class is normally used in combination with the definition of a component.
A Flow can be limited by upper and lower bounds (constant or time-dependent) or by summarised limits.
For all parameters see the API documentation of the Flow class or the examples of the nodes below. A basic flow can be defined without any parameter.

solph.flows.Flow()

Oemof has different types of flows but you should be aware that you cannot connect every flow type with every component.

Note

See the Flow class for all parameters and the mathematical background.

Components

Components can be classified into three categories. Basic components, detailed components, and experimental components. The experimental section was created to lower the entry barrier for new components. Be aware that these components might not be properly documented or even sometimes do not even work as intended. Let us know if you have used and tested these components. This is the first step to remove the experimental disclaimer.

See Solph components for a list of all components.

Optimise your energy system

The typical optimisation of an energy system in solph is the dispatch optimisation, which means that the use of the sources is optimised to satisfy the demand at least costs.
Therefore, variable cost can be defined for all components. The cost for gas should be defined in the gas source while the variable costs of the gas power plant are caused by operating material.
You can deviate from this scheme but you should keep it consistent to make it understandable for others.

Costs do not have to be monetary costs but could be emissions or other variable units.

Furthermore, it is possible to optimise the capacity of different components (see Investment optimisation).

set up a simple least cost optimisation
om = solph.Model(my_energysystem)

solve the energy model using the CBC solver
om.solve(solver='cbc', solve_kwargs={'tee': True})

If you want to analyse the lp-file to see all equations and bounds you can write the file to you disc. In that case you should reduce the timesteps to 3. This will increase the readability of the file.

set up a simple least cost optimisation
om = solph.Model(my_energysystem)

write the lp file for debugging or other reasons
om.write('path/my_model.lp', io_options={'symbolic_solver_labels': True})

Analysing your results

If you want to analyse your results, you should first dump your EnergySystem instance, otherwise you have to run the simulation again.

my_energysystem.results = processing.results(om)
my_energysystem.dump('my_path', 'my_dump.oemof')

If you need the meta results of the solver you can do the following:

my_energysystem.results['main'] = processing.results(om)
my_energysystem.results['meta'] = processing.meta_results(om)
my_energysystem.dump('my_path', 'my_dump.oemof')

To restore the dump you can simply create an EnergySystem instance and restore your dump into it.

import oemof.solph as solph
my_energysystem = solph.EnergySystem()
my_energysystem.restore('my_path', 'my_dump.oemof')
results = my_energysystem.results

If you use meta results do the following instead of the previous line.
results = my_energysystem.results['main']
meta = my_energysystem.results['meta']

If you call dump/restore without any parameters, the dump will be stored as ‘es_dump.oemof’ into the ‘.oemof/dumps/’ folder created in your HOME directory.

See Handling Results to learn how to process, plot and analyse the results.

Solph components

	Sink (basic)

	Source (basic)

	Transformer (basic)

	ExtractionTurbineCHP (component)

	GenericCHP (component)

	Link (experimental)

	GenericStorage (component)

	ElectricalLine (experimental)

	GenericCAES (experimental)

	SinkDSM (experimental)

Sink (basic)

A sink is normally used to define the demand within an energy model but it can also be used to detect excesses.

The example shows the electricity demand of the electricity_bus defined above.
The ‘my_demand_series’ should be sequence of normalised valueswhile the ‘nominal_value’ is the maximum demand the normalised sequence is multiplied with.
Giving ‘my_demand_series’ as parameter ‘fix’ means that the demand cannot be changed by the solver.

solph.components.Sink(label='electricity_demand', inputs={electricity_bus: solph.flows.Flow(
 fix=my_demand_series, nominal_value=nominal_demand)})

In contrast to the demand sink the excess sink has normally less restrictions but is open to take the whole excess.

solph.components.Sink(label='electricity_excess', inputs={electricity_bus: solph.flows.Flow()})

Note

The Sink class is only a plug and provides no additional constraints or variables.

Source (basic)

A source can represent a pv-system, a wind power plant, an import of natural gas or a slack variable to avoid creating an in-feasible model.

While a wind power plant will have as feed-in depending on the weather conditions the natural_gas import might be restricted by maximum value (nominal_value) and an annual limit (full_load_time_max).
As we do have to pay for imported gas we should set variable costs.
Comparable to the demand series an fix is used to define a fixed the normalised output of a wind power plant.
Alternatively, you might use max to allow for easy curtailment.
The nominal_value sets the installed capacity.

solph.components.Source(
 label='import_natural_gas',
 outputs={my_energysystem.groups['natural_gas']: solph.flows.Flow(
 nominal_value=1000, full_load_time_max=1000000, variable_costs=50)})

solph.components.Source(label='wind', outputs={electricity_bus: solph.flows.Flow(
 fix=wind_power_feedin_series, nominal_value=1000000)})

Note

The Source class is only a plug and provides no additional constraints or variables.

Transformer (basic)

An instance of the Transformer class can represent a node with multiple input and output flows such as a power plant, a transport line or any kind of a transforming process as electrolysis, a cooling device or a heat pump.
The efficiency has to be constant within one time step to get a linear transformation.
You can define a different efficiency for every time step (e.g. the thermal powerplant efficiency according to the ambient temperature) but this series has to be predefined and cannot be changed within the optimisation.

A condensing power plant can be defined by a transformer with one input (fuel) and one output (electricity).

b_gas = solph.buses.Bus(label='natural_gas')
b_el = solph.buses.Bus(label='electricity')

solph.components.Transformer(
 label="pp_gas",
 inputs={bgas: solph.flows.Flow()},
 outputs={b_el: solph.flows.Flow(nominal_value=10e10)},
 conversion_factors={electricity_bus: 0.58})

A CHP power plant would be defined in the same manner but with two outputs:

b_gas = solph.buses.Bus(label='natural_gas')
b_el = solph.buses.Bus(label='electricity')
b_th = solph.buses.Bus(label='heat')

solph.components.Transformer(
 label='pp_chp',
 inputs={b_gas: Flow()},
 outputs={b_el: Flow(nominal_value=30),
 b_th: Flow(nominal_value=40)},
 conversion_factors={b_el: 0.3, b_th: 0.4})

A CHP power plant with 70% coal and 30% natural gas can be defined with two inputs and two outputs:

b_gas = solph.buses.Bus(label='natural_gas')
b_coal = solph.buses.Bus(label='hard_coal')
b_el = solph.buses.Bus(label='electricity')
b_th = solph.buses.Bus(label='heat')

solph.components.Transformer(
 label='pp_chp',
 inputs={b_gas: Flow(), b_coal: Flow()},
 outputs={b_el: Flow(nominal_value=30),
 b_th: Flow(nominal_value=40)},
 conversion_factors={b_el: 0.3, b_th: 0.4,
 b_coal: 0.7, b_gas: 0.3})

A heat pump would be defined in the same manner. New buses are defined to make the code cleaner:

b_el = solph.buses.Bus(label='electricity')
b_th_low = solph.buses.Bus(label='low_temp_heat')
b_th_high = solph.buses.Bus(label='high_temp_heat')

The cop (coefficient of performance) of the heat pump can be defined as
a scalar or a sequence.
cop = 3

solph.components.Transformer(
 label='heat_pump',
 inputs={b_el: Flow(), b_th_low: Flow()},
 outputs={b_th_high: Flow()},
 conversion_factors={b_el: 1/cop,
 b_th_low: (cop-1)/cop})

If the low-temperature reservoir is nearly infinite (ambient air heat pump) the low temperature bus is not needed and, therefore, a Transformer with one input is sufficient.

Note

See the Transformer class for all parameters and the mathematical background.

ExtractionTurbineCHP (component)

The ExtractionTurbineCHP inherits from the Transformer (basic) class. Like the name indicates,
the application example for the component is a flexible combined heat and power
(chp) plant. Of course, an instance of this class can represent also another
component with one input and two output flows and a flexible ratio between
these flows, with the following constraints:

\[\begin{split}&
(1)\dot H_{Fuel}(t) =
 \frac{P_{el}(t) + \dot Q_{th}(t) \cdot \beta(t)}
 {\eta_{el,woExtr}(t)} \\
&
(2)P_{el}(t) \geq \dot Q_{th}(t) \cdot C_b\end{split}\]

where:

\[\beta(t) = \frac{\eta_{el,woExtr}(t) -
 \eta_{el,maxExtr}(t)}{\eta_{th,maxExtr}(t)}\]

and:

\[C_b = \frac{\eta_{el,maxExtr}(t)}{\eta_{th,maxExtr}(t)}\]

The first equation is the result of the relation between the input
flow and the two output flows, the second equation stems from how the two
output flows relate to each other.

These constraints are applied in addition to those of a standard
Transformer. The constraints limit the range of
the possible operation points, like the following picture shows. For a certain
flow of fuel, there is a line of operation points, whose slope is defined by
the power loss factor \(\beta\) (in some contexts also referred to as
\(C_v\)). The second constraint limits the decrease of electrical power and
incorporates the backpressure coefficient \(C_b\).

[image: variable_chp_plot.svg]

For now, ExtractionTurbineCHP instances must
have one input and two output flows. The class allows the definition
of a different efficiency for every time step that can be passed as a series
of parameters that are fixed before the optimisation. In contrast to the
Transformer, a main flow and a tapped flow is
defined. For the main flow you can define a separate conversion factor that
applies when the second flow is zero (`conversion_factor_full_condensation`).

solph.components._extractionTurbineCHP(
 label='variable_chp_gas',
 inputs={b_gas: solph.flows.Flow(nominal_value=10e10)},
 outputs={b_el: solph.flows.Flow(), b_th: solph.flows.Flow()},
 conversion_factors={b_el: 0.3, b_th: 0.5},
 conversion_factor_full_condensation={b_el: 0.5})

The key of the parameter ‘conversion_factor_full_condensation’ defines which
of the two flows is the main flow. In the example above, the flow to the Bus
‘b_el’ is the main flow and the flow to the Bus ‘b_th’ is the tapped flow.
The following plot shows how the variable chp (right) schedules it’s electrical
and thermal power production in contrast to a fixed chp (left). The plot is the
output of an example in the example repository [https://github.com/oemof/oemof-examples].

[image: variable_chp_plot.svg]

Note

See the ExtractionTurbineCHP class for all parameters and the mathematical background.

GenericCHP (component)

With the GenericCHP class it is possible to model different types of CHP plants (combined cycle extraction turbines,
back pressure turbines and motoric CHP), which use different ranges of operation, as shown in the figure below.

[image: scheme of GenericCHP operation range]

Combined cycle extraction turbines: The minimal and maximal electric power without district heating
(red dots in the figure) define maximum load and minimum load of the plant. Beta defines electrical power loss through
heat extraction. The minimal thermal condenser load to cooling water and the share of flue gas losses
at maximal heat extraction determine the right boundary of the operation range.

solph.components.GenericCHP(
 label='combined_cycle_extraction_turbine',
 fuel_input={bgas: solph.flows.Flow(
 H_L_FG_share_max=[0.19 for p in range(0, periods)])},
 electrical_output={bel: solph.flows.Flow(
 P_max_woDH=[200 for p in range(0, periods)],
 P_min_woDH=[80 for p in range(0, periods)],
 Eta_el_max_woDH=[0.53 for p in range(0, periods)],
 Eta_el_min_woDH=[0.43 for p in range(0, periods)])},
 heat_output={bth: solph.flows.Flow(
 Q_CW_min=[30 for p in range(0, periods)])},
 Beta=[0.19 for p in range(0, periods)],
 back_pressure=False)

For modeling a back pressure CHP, the attribute back_pressure has to be set to True.
The ratio of power and heat production in a back pressure plant is fixed, therefore the operation range
is just a line (see figure). Again, the P_min_woDH and P_max_woDH, the efficiencies at these points and the share of flue
gas losses at maximal heat extraction have to be specified. In this case “without district heating” is not to be taken
literally since an operation without heat production is not possible. It is advised to set Beta to zero, so the minimal and
maximal electric power without district heating are the same as in the operation point (see figure). The minimal
thermal condenser load to cooling water has to be zero, because there is no condenser besides the district heating unit.

solph.components.GenericCHP(
 label='back_pressure_turbine',
 fuel_input={bgas: solph.flows.Flow(
 H_L_FG_share_max=[0.19 for p in range(0, periods)])},
 electrical_output={bel: solph.flows.Flow(
 P_max_woDH=[200 for p in range(0, periods)],
 P_min_woDH=[80 for p in range(0, periods)],
 Eta_el_max_woDH=[0.53 for p in range(0, periods)],
 Eta_el_min_woDH=[0.43 for p in range(0, periods)])},
 heat_output={bth: solph.flows.Flow(
 Q_CW_min=[0 for p in range(0, periods)])},
 Beta=[0 for p in range(0, periods)],
 back_pressure=True)

A motoric chp has no condenser, so Q_CW_min is zero. Electrical power does not depend on the amount of heat used
so Beta is zero. The minimal and maximal electric power (without district heating) and the efficiencies at these
points are needed, whereas the use of electrical power without using thermal energy is not possible.
With Beta=0 there is no difference between these points and the electrical output in the operation range.
As a consequence of the functionality of a motoric CHP, share of flue gas losses at maximal heat extraction but also
at minimal heat extraction have to be specified.

solph.components.GenericCHP(
 label='motoric_chp',
 fuel_input={bgas: solph.flows.Flow(
 H_L_FG_share_max=[0.18 for p in range(0, periods)],
 H_L_FG_share_min=[0.41 for p in range(0, periods)])},
 electrical_output={bel: solph.flows.Flow(
 P_max_woDH=[200 for p in range(0, periods)],
 P_min_woDH=[100 for p in range(0, periods)],
 Eta_el_max_woDH=[0.44 for p in range(0, periods)],
 Eta_el_min_woDH=[0.40 for p in range(0, periods)])},
 heat_output={bth: solph.flows.Flow(
 Q_CW_min=[0 for p in range(0, periods)])},
 Beta=[0 for p in range(0, periods)],
 back_pressure=False)

Modeling different types of plants means telling the component to use different constraints. Constraint 1 to 9
are active in all three cases. Constraint 10 depends on the attribute back_pressure. If true, the constraint is
an equality, if not it is a less or equal. Constraint 11 is only needed for modeling motoric CHP which is done by
setting the attribute H_L_FG_share_min.

\[\begin{split}&
(1)\qquad \dot{H}_F(t) = fuel\ input \\
&
(2)\qquad \dot{Q}(t) = heat\ output \\
&
(3)\qquad P_{el}(t) = power\ output\\
&
(4)\qquad \dot{H}_F(t) = \alpha_0(t) \cdot Y(t) + \alpha_1(t) \cdot
P_{el,woDH}(t)\\
&
(5)\qquad \dot{H}_F(t) = \alpha_0(t) \cdot Y(t) + \alpha_1(t) \cdot
(P_{el}(t) + \beta \cdot \dot{Q}(t))\\
&
(6)\qquad \dot{H}_F(t) \leq Y(t) \cdot
\frac{P_{el, max, woDH}(t)}{\eta_{el,max,woDH}(t)}\\
&
(7)\qquad \dot{H}_F(t) \geq Y(t) \cdot
\frac{P_{el, min, woDH}(t)}{\eta_{el,min,woDH}(t)}\\
&
(8)\qquad \dot{H}_{L,FG,max}(t) = \dot{H}_F(t) \cdot
\dot{H}_{L,FG,sharemax}(t)\\
&
(9)\qquad \dot{H}_{L,FG,min}(t) = \dot{H}_F(t) \cdot
\dot{H}_{L,FG,sharemin}(t)\\
&
(10)\qquad P_{el}(t) + \dot{Q}(t) + \dot{H}_{L,FG,max}(t) +
\dot{Q}_{CW, min}(t) \cdot Y(t) = / \leq \dot{H}_F(t)\\\end{split}\]

where \(= / \leq\) depends on the CHP being back pressure or not.

The coefficients \(\alpha_0\) and \(\alpha_1\)
can be determined given the efficiencies maximal/minimal load:

\[\begin{split}&
\eta_{el,max,woDH}(t) = \frac{P_{el,max,woDH}(t)}{\alpha_0(t)
\cdot Y(t) + \alpha_1(t) \cdot P_{el,max,woDH}(t)}\\
&
\eta_{el,min,woDH}(t) = \frac{P_{el,min,woDH}(t)}{\alpha_0(t)
\cdot Y(t) + \alpha_1(t) \cdot P_{el,min,woDH}(t)}\\\end{split}\]

If \(\dot{H}_{L,FG,min}\) is given, e.g. for a motoric CHP:

\[\begin{split}&
(11)\qquad P_{el}(t) + \dot{Q}(t) + \dot{H}_{L,FG,min}(t) +
\dot{Q}_{CW, min}(t) \cdot Y(t) \geq \dot{H}_F(t)\\[10pt]\end{split}\]

The symbols used are defined as follows (with Variables (V) and Parameters (P)):

	math. symbol

	attribute

	type

	explanation

	\(\dot{H}_{F}\)

	H_F[n,t]

	V

	input of enthalpy through fuel input

	\(P_{el}\)

	P[n,t]

	V

	provided electric power

	\(P_{el,woDH}\)

	P_woDH[n,t]

	V

	electric power without district heating

	\(P_{el,min,woDH}\)

	P_min_woDH[n,t]

	P

	min. electric power without district heating

	\(P_{el,max,woDH}\)

	P_max_woDH[n,t]

	P

	max. electric power without district heating

	\(\dot{Q}\)

	Q[n,t]

	V

	provided heat

	\(\dot{Q}_{CW, min}\)

	Q_CW_min[n,t]

	P

	minimal therm. condenser load to cooling water

	\(\dot{H}_{L,FG,min}\)

	H_L_FG_min[n,t]

	V

	flue gas enthalpy loss at min heat extraction

	\(\dot{H}_{L,FG,max}\)

	H_L_FG_max[n,t]

	V

	flue gas enthalpy loss at max heat extraction

	\(\dot{H}_{L,FG,sharemin}\)

	H_L_FG_share_min[n,t]

	P

	share of flue gas loss at min heat extraction

	\(\dot{H}_{L,FG,sharemax}\)

	H_L_FG_share_max[n,t]

	P

	share of flue gas loss at max heat extraction

	\(Y\)

	Y[n,t]

	V

	status variable on/off

	\(\alpha_0\)

	n.alphas[0][n,t]

	P

	coefficient describing efficiency

	\(\alpha_1\)

	n.alphas[1][n,t]

	P

	coefficient describing efficiency

	\(\beta\)

	beta[n,t]

	P

	power loss index

	\(\eta_{el,min,woDH}\)

	Eta_el_min_woDH[n,t]

	P

	el. eff. at min. fuel flow w/o distr. heating

	\(\eta_{el,max,woDH}\)

	Eta_el_max_woDH[n,t]

	P

	el. eff. at max. fuel flow w/o distr. heating

Note

See the GenericCHP class for all parameters and the mathematical background.

GenericStorage (component)

A component to model a storage with its basic characteristics. The
GenericStorage is designed for one input and one output.
The nominal_storage_capacity of the storage signifies the storage capacity. You can either set it to the net capacity or to the gross capacity and limit it using the min/max attribute.
To limit the input and output flows, you can define the nominal_value in the Flow objects.
Furthermore, an efficiency for loading, unloading and a loss rate can be defined.

solph.components.GenericStorage(
 label='storage',
 inputs={b_el: solph.flows.Flow(nominal_value=9, variable_costs=10)},
 outputs={b_el: solph.flows.Flow(nominal_value=25, variable_costs=10)},
 loss_rate=0.001, nominal_storage_capacity=50,
 inflow_conversion_factor=0.98, outflow_conversion_factor=0.8)

For initialising the state of charge before the first time step (time step zero) the parameter initial_storage_level (default value: None) can be set by a numeric value as fraction of the storage capacity.
Additionally the parameter balanced (default value: True) sets the relation of the state of charge of time step zero and the last time step.
If balanced=True, the state of charge in the last time step is equal to initial value in time step zero.
Use balanced=False with caution as energy might be added to or taken from the energy system due to different states of charge in time step zero and the last time step.
Generally, with these two parameters four configurations are possible, which might result in different solutions of the same optimization model:

	initial_storage_level=None, balanced=True (default setting): The state of charge in time step zero is a result of the optimization. The state of charge of the last time step is equal to time step zero. Thus, the storage is not violating the energy conservation by adding or taking energy from the system due to different states of charge at the beginning and at the end of the optimization period.

	initial_storage_level=0.5, balanced=True: The state of charge in time step zero is fixed to 0.5 (50 % charged). The state of charge in the last time step is also constrained by 0.5 due to the coupling parameter balanced set to True.

	initial_storage_level=None, balanced=False: Both, the state of charge in time step zero and the last time step are a result of the optimization and not coupled.

	initial_storage_level=0.5, balanced=False: The state of charge in time step zero is constrained by a given value. The state of charge of the last time step is a result of the optimization.

The following code block shows an example of the storage parametrization for the second configuration:

solph.components.GenericStorage(
 label='storage',
 inputs={b_el: solph.flows.Flow(nominal_value=9, variable_costs=10)},
 outputs={b_el: solph.flows.Flow(nominal_value=25, variable_costs=10)},
 loss_rate=0.001, nominal_storage_capacity=50,
 initial_storage_level=0.5, balanced=True,
 inflow_conversion_factor=0.98, outflow_conversion_factor=0.8)

If you want to view the temporal course of the state of charge of your storage
after the optimisation, you need to check the storage_content in the results:

from oemof.solph import processing, views
results = processing.results(om)
column_name = (('your_storage_label', 'None'), 'storage_content')
SC = views.node(results, 'your_storage_label')['sequences'][column_name]

The storage_content is the absolute value of the current stored energy.
By calling:

views.node(results, 'your_storage_label')['scalars']

you get the results of the scalar values of your storage, e.g. the initial
storage content before time step zero (init_content).

For more information see the definition of the GenericStorage class or check the example repository of oemof [https://github.com/oemof/oemof-examples].

Using an investment object with the GenericStorage component

Based on the GenericStorage object the GenericInvestmentStorageBlock adds two main investment possibilities.

	Invest into the flow parameters e.g. a turbine or a pump

	Invest into capacity of the storage e.g. a basin or a battery cell

Investment in this context refers to the value of the variable for the ‘nominal_value’ (installed capacity) in the investment mode.

As an addition to other flow-investments, the storage class implements the possibility to couple or decouple the flows
with the capacity of the storage.
Three parameters are responsible for connecting the flows and the capacity of the storage:

	invest_relation_input_capacity fixes the input flow investment to the capacity investment. A ratio of 1 means that the storage can be filled within one time-period.

	invest_relation_output_capacity fixes the output flow investment to the capacity investment. A ratio of 1 means that the storage can be emptied within one period.

	invest_relation_input_output fixes the input flow investment to the output flow investment. For values <1, the input will be smaller and for values >1 the input flow will be larger.

You should not set all 3 parameters at the same time, since it will lead to overdetermination.

The following example pictures a Pumped Hydroelectric Energy Storage (PHES). Both flows and the storage itself (representing: pump, turbine, basin) are free in their investment. You can set the parameters to None or delete them as None is the default value.

solph.components.GenericStorage(
 label='PHES',
 inputs={b_el: solph.flows.Flow(investment= solph.Investment(ep_costs=500))},
 outputs={b_el: solph.flows.Flow(investment= solph.Investment(ep_costs=500)},
 loss_rate=0.001,
 inflow_conversion_factor=0.98, outflow_conversion_factor=0.8),
 investment = solph.Investment(ep_costs=40))

The following example describes a battery with flows coupled to the capacity of the storage.

solph.components.GenericStorage(
 label='battery',
 inputs={b_el: solph.flows.Flow()},
 outputs={b_el: solph.flows.Flow()},
 loss_rate=0.001,
 inflow_conversion_factor=0.98,
 outflow_conversion_factor=0.8,
 invest_relation_input_capacity = 1/6,
 invest_relation_output_capacity = 1/6,
 investment = solph.Investment(ep_costs=400))

Note

See the GenericStorage class for all parameters and the mathematical background.

OffsetTransformer (component)

The OffsetTransformer object makes it possible to create a Transformer with different efficiencies in part load condition.
For this object it is necessary to define the inflow as a nonconvex flow and to set a minimum load.
The following example illustrates how to define an OffsetTransformer for given information for the output:

eta_min = 0.5 # efficiency at minimal operation point
eta_max = 0.8 # efficiency at nominal operation point
P_out_min = 20 # absolute minimal output power
P_out_max = 100 # absolute nominal output power

calculate limits of input power flow
P_in_min = P_out_min / eta_min
P_in_max = P_out_max / eta_max

calculate coefficients of input-output line equation
c1 = (P_out_max-P_out_min)/(P_in_max-P_in_min)
c0 = P_out_max - c1*P_in_max

define OffsetTransformer
solph.custom.OffsetTransformer(
 label='boiler',
 inputs={bfuel: solph.flows.Flow(
 nominal_value=P_in_max,
 max=1,
 min=P_in_min/P_in_max,
 nonconvex=solph.NonConvex())},
 outputs={bth: solph.flows.Flow()},
 coefficients = [c0, c1])

This example represents a boiler, which is supplied by fuel and generates heat.
It is assumed that the nominal thermal power of the boiler (output power) is 100 (kW) and the efficiency at nominal power is 80 %.
The boiler cannot operate under 20 % of nominal power, in this case 20 (kW) and the efficiency at that part load is 50 %.
Note that the nonconvex flow has to be defined for the input flow.
By using the OffsetTransformer a linear relation of in- and output power with a power dependent efficiency is generated.
The following figures illustrate the relations:

[image: OffsetTransformer_power_relation.svg]

Now, it becomes clear, why this object has been named OffsetTransformer. The
linear equation of in- and outflow does not hit the origin, but is offset. By multiplying
the Offset \(C_{0}\) with the binary status variable of the nonconvex flow, the origin (0, 0) becomes
part of the solution space and the boiler is allowed to switch off:

\[\begin{split}&
P_{out}(t) = C_1(t) \cdot P_{in}(t) + C_0(t) \cdot Y(t) \\\end{split}\]

The symbols used are defined as follows (with Variables (V) and Parameters (P)):

	symbol

	attribute

	type

	explanation

	\(P_{out}(t)\)

	flow[n,o,t]

	V

	Outflow of transformer

	\(P_{in}(t)\)

	flow[i,n,t]

	V

	Inflow of transformer

	\(Y(t)\)

	status[i,n,t]

	V

	Binary status variable of nonconvex inflow

	\(C_1(t)\)

	coefficients[1][n,t]

	P

	Linear coefficient 1 (slope)

	\(C_0(t)\)

	coefficients[0][n,t]

	P

	Linear coefficient 0 (y-intersection)

The following figures shows the efficiency dependent on the output power,
which results in a nonlinear relation:

\[\eta = C_1 \cdot P_{out}(t) / (P_{out}(t) - C_0)\]

[image: OffsetTransformer_efficiency.svg]

The parameters \(C_{0}\) and \(C_{1}\) can be given by scalars or by series in order to define a different efficiency equation for every timestep.

Note

See the OffsetTransformer class for all parameters and the mathematical background.

ElectricalLine (experimental)

Electrical line.

Note

See the ElectricalLine class for all parameters and the mathematical background.

GenericCAES (experimental)

Compressed Air Energy Storage (CAES).
The following constraints describe the CAES:

\[\begin{split}&
(1) \qquad P_{cmp}(t) = electrical_input (t)
 \quad \forall t \in T \\
&
(2) \qquad P_{cmp_max}(t) = m_{cmp_max} \cdot CAS_{fil}(t-1)
 + b_{cmp_max}
 \quad \forall t \in\left[1, t_{max}\right] \\
&
(3) \qquad P_{cmp_max}(t) = b_{cmp_max}
 \quad \forall t \notin\left[1, t_{max}\right] \\
&
(4) \qquad P_{cmp}(t) \leq P_{cmp_max}(t)
 \quad \forall t \in T \\
&
(5) \qquad P_{cmp}(t) \geq P_{cmp_min} \cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(6) \qquad P_{cmp}(t) = m_{cmp_max} \cdot CAS_{fil_max}
 + b_{cmp_max} \cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(7) \qquad \dot{Q}_{cmp}(t) =
 m_{cmp_q} \cdot P_{cmp}(t) + b_{cmp_q} \cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(8) \qquad \dot{Q}_{cmp}(t) = \dot{Q}_{cmp_out}(t)
 + \dot{Q}_{tes_in}(t)
 \quad \forall t \in T \\
&
(9) \qquad r_{cmp_tes} \cdot\dot{Q}_{cmp_out}(t) =
 \left(1-r_{cmp_tes}\right) \dot{Q}_{tes_in}(t)
 \quad \forall t \in T \\
&
(10) \quad\; P_{exp}(t) = electrical_output (t)
 \quad \forall t \in T \\
&
(11) \quad\; P_{exp_max}(t) = m_{exp_max} CAS_{fil}(t-1)
 + b_{exp_max}
 \quad \forall t \in\left[1, t_{\max }\right] \\
&
(12) \quad\; P_{exp_max}(t) = b_{exp_max}
 \quad \forall t \notin\left[1, t_{\max }\right] \\
&
(13) \quad\; P_{exp}(t) \leq P_{exp_max}(t)
 \quad \forall t \in T \\
&
(14) \quad\; P_{exp}(t) \geq P_{exp_min}(t) \cdot ST_{exp}(t)
 \quad \forall t \in T \\
&
(15) \quad\; P_{exp}(t) \leq m_{exp_max} \cdot CAS_{fil_max}
 + b_{exp_max} \cdot ST_{exp}(t)
 \quad \forall t \in T \\
&
(16) \quad\; \dot{Q}_{exp}(t) = m_{exp_q} \cdot P_{exp}(t)
 + b_{cxp_q} \cdot ST_{cxp}(t)
 \quad \forall t \in T \\
&
(17) \quad\; \dot{Q}_{exp_in}(t) = fuel_input(t)
 \quad \forall t \in T \\
&
(18) \quad\; \dot{Q}_{exp}(t) = \dot{Q}_{exp_in}(t)
 + \dot{Q}_{tes_out}(t)+\dot{Q}_{cxp_add}(t)
 \quad \forall t \in T \\
&
(19) \quad\; r_{exp_tes} \cdot \dot{Q}_{exp_in}(t) =
 (1 - r_{exp_tes})(\dot{Q}_{tes_out}(t) + \dot{Q}_{exp_add}(t))
 \quad \forall t \in T \\
&
(20) \quad\; \dot{E}_{cas_in}(t) = m_{cas_in}\cdot P_{cmp}(t)
 + b_{cas_in}\cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(21) \quad\; \dot{E}_{cas_out}(t) = m_{cas_out}\cdot P_{cmp}(t)
 + b_{cas_out}\cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(22) \quad\; \eta_{cas_tmp} \cdot CAS_{fil}(t) = CAS_{fil}(t-1)
 + \tau\left(\dot{E}_{cas_in}(t) - \dot{E}_{cas_out}(t)\right)
 \quad \forall t \in\left[1, t_{max}\right] \\
 &
(23) \quad\; \eta_{cas_tmp} \cdot CAS_{fil}(t) =
 \tau\left(\dot{E}_{cas_in}(t) - \dot{E}_{cas_out}(t)\right)
 \quad \forall t \notin\left[1, t_{max}\right] \\
&
(24) \quad\; CAS_{fil}(t) \leq CAS_{fil_max}
 \quad \forall t \in T \\
&
(25) \quad\; TES_{fil}(t) = TES_{fil}(t-1)
 + \tau\left(\dot{Q}_{tes_in}(t)
 - \dot{Q}_{tes_out}(t)\right)
 \quad \forall t \in\left[1, t_{max}\right] \\
 &
(26) \quad\; TES_{fil}(t) =
 \tau\left(\dot{Q}_{tes_in}(t)
 - \dot{Q}_{tes_out}(t)\right)
 \quad \forall t \notin\left[1, t_{max}\right] \\
&
(27) \quad\; TES_{fil}(t) \leq TES_{fil_max}
 \quad \forall t \in T \\
&\end{split}\]

Table: Symbols and attribute names of variables and parameters

Variables (V) and Parameters (P)

	symbol

	attribute

	type

	explanation

	\(ST_{cmp}\)

	cmp_st[n,t]

	V

	Status of
compression

	\({P}_{cmp}\)

	cmp_p[n,t]

	V

	Compression power

	\({P}_{cmp_max}\)

	cmp_p_max[n,t]

	V

	Max.
compression power

	\(\dot{Q}_{cmp}\)

	cmp_q_out_sum[n,t]

	V

	Summed
heat flow in compression

	\(\dot{Q}_{cmp_out}\)

	cmp_q_waste[n,t]

	V

	Waste heat flow from compression

	\(ST_{exp}(t)\)

	exp_st[n,t]

	V

	Status of
expansion (binary)

	\(P_{exp}(t)\)

	exp_p[n,t]

	V

	Expansion power

	\(P_{exp_max}(t)\)

	exp_p_max[n,t]

	V

	Max.
expansion power

	\(\dot{Q}_{exp}(t)\)

	exp_q_in_sum[n,t]

	V

	Summed heat flow in expansion

	\(\dot{Q}_{exp_in}(t)\)

	exp_q_fuel_in[n,t]

	V

	Heat (external) flow into expansion

	\(\dot{Q}_{exp_add}(t)\)

	exp_q_add_in[n,t]

	V

	Additional heat flow into expansion

	\(CAV_{fil}(t)\)

	cav_level[n,t]

	V

	Filling level
if CAE

	\(\dot{E}_{cas_in}(t)\)

	cav_e_in[n,t]

	V

	Exergy flow into CAS

	\(\dot{E}_{cas_out}(t)\)

	cav_e_out[n,t]

	V

	Exergy flow from CAS

	\(TES_{fil}(t)\)

	tes_level[n,t]

	V

	Filling
level of Thermal Energy Storage (TES)

	\(\dot{Q}_{tes_in}(t)\)

	tes_e_in[n,t]

	V

	Heat
flow into TES

	\(\dot{Q}_{tes_out}(t)\)

	tes_e_out[n,t]

	V

	Heat
flow from TES

	\(b_{cmp_max}\)

	cmp_p_max_b[n,t]

	P

	Specific
y-intersection

	\(b_{cmp_q}\)

	cmp_q_out_b[n,t]

	P

	Specific
y-intersection

	\(b_{exp_max}\)

	exp_p_max_b[n,t]

	P

	Specific
y-intersection

	\(b_{exp_q}\)

	exp_q_in_b[n,t]

	P

	Specific
y-intersection

	\(b_{cas_in}\)

	cav_e_in_b[n,t]

	P

	Specific
y-intersection

	\(b_{cas_out}\)

	cav_e_out_b[n,t]

	P

	Specific
y-intersection

	\(m_{cmp_max}\)

	cmp_p_max_m[n,t]

	P

	Specific
slope

	\(m_{cmp_q}\)

	cmp_q_out_m[n,t]

	P

	Specific
slope

	\(m_{exp_max}\)

	exp_p_max_m[n,t]

	P

	Specific
slope

	\(m_{exp_q}\)

	exp_q_in_m[n,t]

	P

	Specific
slope

	\(m_{cas_in}\)

	cav_e_in_m[n,t]

	P

	Specific
slope

	\(m_{cas_out}\)

	cav_e_out_m[n,t]

	P

	Specific
slope

	\(P_{cmp_min}\)

	cmp_p_min[n,t]

	P

	Min.
compression power

	\(r_{cmp_tes}\)

	cmp_q_tes_share[n,t]

	P

	Ratio
between waste heat flow and heat flow into TES

	\(r_{exp_tes}\)

	exp_q_tes_share[n,t]

	P

	
Ratio between external heat flow into expansion

and heat flows from TES and additional source

	\(\tau\)

	m.timeincrement[n,t]

	P

	Time interval
length

	\(TES_{fil_max}\)

	tes_level_max[n,t]

	P

	Max.
filling level of TES

	\(CAS_{fil_max}\)

	cav_level_max[n,t]

	P

	Max.
filling level of TES

	\(\tau\)

	cav_eta_tmp[n,t]

	P

	
Temporal efficiency

(loss factor to take intertemporal losses into account)

	\(electrical_input\)

	flow[list(n.electrical_input.keys())[0], n, t]

	P

	Electr. power input into compression

	\(electrical_output\)

	flow[n, list(n.electrical_output.keys())[0], t]

	P

	Electr. power output of expansion

	\(fuel_input\)

	flow[list(n.fuel_input.keys())[0], n, t]

	P

	Heat input
(external) into Expansion

Note

See the GenericCAES class for all parameters and the mathematical background.

Link (experimental)

Link.

Note

See the Link class for all parameters and the mathematical background.

SinkDSM (experimental)

SinkDSM can used to represent flexibility in a demand time series.
It can represent both, load shifting or load shedding.
For load shifting, elasticity of the demand is described by upper (~oemof.solph.custom.sink_dsm.SinkDSM.capacity_up) and lower (~oemof.solph.custom.SinkDSM.capacity_down) bounds where within the demand is allowed to vary.
Upwards shifted demand is then balanced with downwards shifted demand.
For load shedding, shedding capability is described by ~oemof.solph.custom.SinkDSM.capacity_down.
It both, load shifting and load shedding are allowed, ~oemof.solph.custom.SinkDSM.capacity_down limits the sum of both downshift categories.

SinkDSM provides three approaches how the Demand-Side Management (DSM) flexibility is represented in constraints
It can be used for both, dispatch and investments modeling.

	“DLR”: Implementation of the DSM modeling approach from by Gils (2015): Balancing of Intermittent Renewable Power Generation by Demand Response and Thermal Energy Storage, Stuttgart, [http://dx.doi.org/10.18419/opus-6888],
Details: SinkDSMDLRBlock and SinkDSMDLRInvestmentBlock

	“DIW”: Implementation of the DSM modeling approach by Zerrahn & Schill (2015): On the representation of demand-side management in power system models [https://www.sciencedirect.com/science/article/abs/pii/S036054421500331X],
in: Energy (84), pp. 840-845, 10.1016/j.energy.2015.03.037. Details: SinkDSMDIWBlock and SinkDSMDIWInvestmentBlock

	“oemof”: Is a fairly simple approach. Within a defined windows of time steps, demand can be shifted within the defined bounds of elasticity.
The window sequentially moves forwards. Details: SinkDSMOemofBlock and SinkDSMOemofInvestmentBlock

Cost can be associated to either demand up shifts or demand down shifts or both.

This small example of PV, grid and SinkDSM shows how to use the component

Create some data
pv_day = [(-(1 / 6 * x ** 2) + 6) / 6 for x in range(-6, 7)]
pv_ts = [0] * 6 + pv_day + [0] * 6
data_dict = {"demand_el": [3] * len(pv_ts),
 "pv": pv_ts,
 "Cap_up": [0.5] * len(pv_ts),
 "Cap_do": [0.5] * len(pv_ts)}
data = pd.DataFrame.from_dict(data_dict)

Do timestamp stuff
datetimeindex = pd.date_range(start='1/1/2013', periods=len(data.index), freq='H')
data['timestamp'] = datetimeindex
data.set_index('timestamp', inplace=True)

Create Energy System
es = solph.EnergySystem(timeindex=datetimeindex)

Create bus representing electricity grid
b_elec = solph.buses.Bus(label='Electricity bus')
es.add(b_elec)

Create a back supply
grid = solph.components.Source(label='Grid',
 outputs={
 b_elec: solph.flows.Flow(
 nominal_value=10000,
 variable_costs=50)}
)
es.add(grid)

PV supply from time series
s_wind = solph.components.Source(label='wind',
 outputs={
 b_elec: solph.flows.Flow(
 fix=data['pv'],
 nominal_value=3.5)}
)
es.add(s_wind)

Create DSM Sink
demand_dsm = solph.custom.SinkDSM(label="DSM",
 inputs={b_elec: solph.flows.Flow()},
 demand=data['demand_el'],
 capacity_up=data["Cap_up"],
 capacity_down=data["Cap_do"],
 delay_time=6,
 max_demand=1,
 max_capacity_up=1,
 max_capacity_down=1,
 approach="DIW",
 cost_dsm_down=5)
es.add(demand_dsm)

Yielding the following results

[image: Plot_delay_2013-01-01.svg]

Note

	Keyword argument method from v0.4.1 has been renamed to approach in v0.4.2 and methods have been renamed.

	The parameters demand, capacity_up and capacity_down have been normalized to allow investments modeling. To retreive the original dispatch behaviour from v0.4.1, set max_demand=1, max_capacity_up=1, max_capacity_down=1.

	This component is a candidate component. It’s implemented as a custom component for users that like to use and test the component at early stage. Please report issues to improve the component.

	See the SinkDSM class for all parameters and the mathematical background.

Investment optimisation

As described in Optimise your energy system the typical way to optimise an energy system is the dispatch optimisation based on marginal costs. Solph also provides a combined dispatch and investment optimisation.
Based on investment costs you can compare the usage of existing components against building up new capacity.
The annual savings by building up new capacity must therefore compensate the annuity of the investment costs (the time period does not have to be one year but depends on your Datetime index).

See the API of the Investment class to see all possible parameters.

Basically, an instance of the investment class can be added to a Flow or a
Storage. All parameters that usually refer to the nominal_value/capacity will
now refer to the investment variables and existing capacity. It is also
possible to set a maximum limit for the capacity that can be build.
If existing capacity is considered for a component with investment mode enabled,
the ep_costs still apply only to the newly built capacity.

The investment object can be used in Flows and some components. See the
Solph components section for detailed information of each
component.

For example if you want to find out what would be the optimal capacity of a wind
power plant to decrease the costs of an existing energy system, you can define
this model and add an investment source.
The wind_power_time_series has to be a normalised feed-in time series of you
wind power plant. The maximum value might be caused by limited space for wind
turbines.

solph.components.Source(label='new_wind_pp', outputs={electricity: solph.flows.Flow(
 fix=wind_power_time_series,
 investment=solph.Investment(ep_costs=epc, maximum=50000))})

Let’s slightly alter the case and consider for already existing wind power
capacity of 20,000 kW. We’re still expecting the total wind power capacity, thus we
allow for 30,000 kW of new installations and formulate as follows.

solph.components.Source(label='new_wind_pp', outputs={electricity: solph.flows.Flow(
 fix=wind_power_time_series,
 investment=solph.Investment(ep_costs=epc,
 maximum=30000,
 existing=20000))})

The periodical costs (ep_costs) are typically calculated as follows:

capex = 1000 # investment cost
lifetime = 20 # life expectancy
wacc = 0.05 # weighted average of capital cost
epc = capex * (wacc * (1 + wacc) ** lifetime) / ((1 + wacc) ** lifetime - 1)

This also implemented in the annuity function of the economics module in the oemof.tools package. The code above would look like this:

from oemof.tools import economics
epc = economics.annuity(1000, 20, 0.05)

So far, the investment costs and the installed capacity are mathematically a
line through origin. But what if there is a minimum threshold for doing an
investment, e.g. you cannot buy gas turbines lower than a certain
nominal power, or, the marginal costs of bigger plants
decrease.
Therefore, you can use the parameter nonconvex and offset of the
investment class. Both, work with investment in flows and storages. Here is an
example of an transformer:

trafo = solph.components.Transformer(
 label='transformer_nonconvex',
 inputs={bus_0: solph.flows.Flow()},
 outputs={bus_1: solph.flows.Flow(
 investment=solph.Investment(
 ep_costs=4,
 maximum=100,
 minimum=20,
 nonconvex=True,
 offset=400))},
 conversion_factors={bus_1: 0.9})

In this examples, it is assumed, that independent of the size of the
transformer, there are always fix investment costs of 400 (€).
The minimum investment size is 20 (kW)
and the costs per installed unit are 4 (€/kW). With this
option, you could theoretically approximate every cost function you want. But
be aware that for every nonconvex investment flow or storage you are using,
an additional binary variable is created. This might boost your computing time
into the limitless.

The following figures illustrates the use of the nonconvex investment flow.
Here, \(c_{invest,fix}\) is the offset value and \(c_{invest,var}\) is
the ep_costs value:

[image: nonconvex_invest_investcosts_power.svg]

In case of a convex investment (which is the default setting
nonconvex=Flase), the minimum attribute leads to a forced investment,
whereas in the nonconvex case, the investment can become zero as well.

The calculation of the specific costs per kilowatt installed capacity results
in the following relation for convex and nonconvex investments:

[image: nonconvex_invest_specific_costs.svg]

See InvestmentFlow and
GenericInvestmentStorageBlock for all the
mathematical background, like variables and constraints, which are used.

Note

At the moment the investment class is not compatible with the MIP classes NonConvex.

Mixed Integer (Linear) Problems

Solph also allows you to model components with respect to more technical details,
such as minimum power production. This can be done in both possible combinations,
as dispatch optimization with fixed capacities or combined dispatch and investment optimization.

Dispatch Optimization

In dispatch optimization, it is assumed that the capacities of the assets are already known,
but the optimal dispatch strategy must be obtained.
For this purpose, the class NonConvex should be used, as seen in the following example.

Note that this flow class’s usage is incompatible with the Investment option. This means that,
as stated before, the optimal capacity of the transformer cannot be obtained using the NonConvexFlow
class, and only the optimal dispatch strategy of an existing asset with a given capacity can be optimized here.

b_gas = solph.buses.Bus(label='natural_gas')
b_el = solph.buses.Bus(label='electricity')
b_th = solph.buses.Bus(label='heat')

solph.components.Transformer(
 label='pp_chp',
 inputs={b_gas: solph.flows.Flow()},
 outputs={b_el: solph.flows.Flow(
 nonconvex=solph.NonConvex(),
 nominal_value=30,
 min=0.5),
 b_th: solph.flows.Flow(nominal_value=40)},
 conversion_factors={b_el: 0.3, b_th: 0.4})

The class NonConvex for the electrical output of the created LinearTransformer (i.e., CHP)
will create a ‘status’ variable for the flow.
This will be used to model, for example, minimal/maximal power production constraints if the
attributes min/max of the flow are set. It will also be used to include start-up constraints and costs
if corresponding attributes of the class are provided. For more information, see the API of the
NonConvexFlow class.

Note

The usage of this class can sometimes be tricky as there are many interdenpendencies. So
check out the examples and do not hesitate to ask the developers if your model does
not work as expected.

Combination of Dispatch and Investment Optimisation

Since version ‘v0.5’, it is also possilbe to combine the investment and nonconvex option.
Therefore, a new constraint block for flows, called InvestNonConvexFlowBlock has been developed,
which combines both Investment and NonConvex classes.
The new class offers the possibility to perform the investment optimization of an asset considering min/max values of the flow
as fractions of the optimal capacity. Moreover, it obtains the optimal ‘status’ of the flow during the simulation period.

It must be noted that in a streighforward implementation, a binary variable
representing the ‘status’ of the flow at each time is multiplied by the ‘invest’ parameter,
which is a continuous variable representing the capacity of the asset being optimized (i.e., \(status \times invest\)).
This nonlinearity is linearised in the
InvestNonConvexFlowBlock

b_diesel = solph.buses.Bus(label='diesel')
b_el = solph.buses.Bus(label='electricity')

solph.components.Transformer(
 label='diesel_genset',
 inputs={b_diesel: solph.flows.Flow()},
 outputs={
 b_el: solph.flows.Flow(
 nominal_value=None,
 variable_costs=0.04,
 min=0.2,
 max=1,
 nonconvex=solph.NonConvex(),
 investment=solph.Investment(
 ep_costs=90,
 maximum=150, # required for the linearization
),
)
 },
 conversion_factors={b_el: 0.3})

The following diagram shows the duration curve of a typical diesel genset in a hybrid mini-grid system consisting of a diesel genset,
PV cells, battery, inverter, and rectifier. By using the InvestNonConvexFlowBlock class,
it is possible to obtain the optimal capacity of this component and simultaneously limit its operation between min and max loads.

[image: diesel_genset_nonconvex_invest_flow.svg]

Without using the new InvestNonConvexFlowBlock class, if the same system is optimized again, but this
time using the InvestmentFlowBlock, the corresponding duration curve would be similar to the following
figure. However, assuming that the diesel genset has a minimum operation load of 20% (as seen in the figure), the
InvestmentFlowBlock cannot prevent operations at lower loads than 20%, and it would result in
an infeasible operation of this device for around 50% of its annual operation.

Moreover, using the InvestmentFlowBlock class in the given case study would result in a significantly
oversized diesel genset, which has a 30% larger capacity compared with the optimal capacity obtained from the
InvestNonConvexFlowBlock class.

[image: diesel_genset_investment_flow.svg]

Solving such an optimisation problem considering min/max loads without the InvestNonConvexFlowBlock class, the only possibility is first to obtain the optimal capacity using the
InvestmentFlowBlock and then implement the min/max loads using the
NonConvexFlowBlock class. The following duration curve would be obtained by applying
this method to the same diesel genset.

[image: diesel_genset_nonconvex_flow.svg]

Because of the oversized diesel genset obtained from this approach, the capacity of the PV and battery in the given case study
would be 13% and 43% smaller than the capacities obtained using the NonConvexInvestmentFlow class.
This results in a 15% reduction in the share of renewable energy sources to cover the given demand and a higher levelized
cost of electricity. Last but not least, apart from the nonreliable results, using Investment
and NonConvex classes for the dispatch and investment optimization of the given case study
increases the computation time by more than 9 times compared to the
NonConvexInvestmentFlow class.

Adding additional constraints

You can add additional constraints to your Model. See flexible_modelling in the example repository [https://github.com/oemof/oemof-examples/blob/master/oemof_examples/oemof.solph/v0.3.x/flexible_modelling/add_constraints.py] to learn how to do it.

Some predefined additional constraints can be found in the
constraints module.

	Emission limit for the model -> emission_limit()

	Generic integral limit (general form of emission limit) -> generic_integral_limit()

	Coupling of two variables e.g. investment variables) with a factor -> equate_variables()

	Overall investment limit -> investment_limit()

	Generic investment limit -> additional_investment_flow_limit()

	Limit active flow count -> limit_active_flow_count()

	Limit active flow count by keyword -> limit_active_flow_count_by_keyword()

The Grouping module (Sets)

To construct constraints,
variables and objective expressions inside all Block classes
and the models modules, so called groups are used. Consequently,
certain constraints are created for all elements of a specific group. Thus,
mathematically the groups depict sets of elements inside the model.

The grouping is handled by the solph grouping module groupings
which is based on the groupings module functionality of oemof network. You
do not need to understand how the underlying functionality works. Instead, checkout
how the solph grouping module is used to create groups.

The simplest form is a function that looks at every node of the energy system and
returns a key for the group depending e.g. on node attributes:

 def constraint_grouping(node):
 if isinstance(node, Bus) and node.balanced:
 return blocks.Bus
 if isinstance(node, Transformer):
 return blocks.Transformer
GROUPINGS = [constraint_grouping]

This function can be passed in a list to groupings of
oemof.solph.network.energy_system.EnergySystem. So that we end up with two groups,
one with all Transformers and one with all Buses that are balanced. These
groups are simply stored in a dictionary. There are some advanced functionalities
to group two connected nodes with their connecting flow and others
(see for example: FlowsWithNodes class in the oemof.network package).

Using the Excel (csv) reader

Alternatively to a manual creation of energy system component objects as describe above, can also be created from a excel sheet (libreoffice, gnumeric…).

The idea is to create different sheets within one spreadsheet file for different components. Afterwards you can loop over the rows with the attributes in the columns. The name of the columns may differ from the name of the attribute. You may even create two sheets for the GenericStorage class with attributes such as C-rate for batteries or capacity of turbine for a PHES.

Once you have create your specific excel reader you can lower the entry barrier for other users. It is some sort of a GUI in form of platform independent spreadsheet software and to make data and models exchangeable in one archive.

See oemof’s example repository [https://github.com/oemof/oemof-examples] for an excel reader example.

Handling Results

The main purpose of the processing module is to collect and organise results.
The views module will provide some typical representations of the results.
Plots are not part of solph, because plots are highly individual. However, the
provided pandas.DataFrames are a good start for plots. Some basic functions
for plotting of optimisation results can be found in the separate repository
oemof_visio [https://github.com/oemof/oemof-visio].

The processing.results function gives back the results as a python
dictionary holding pandas Series for scalar values and pandas DataFrames for
all nodes and flows between them. This way we can make use of the full power
of the pandas package available to process the results.

See the pandas documentation [https://pandas.pydata.org/pandas-docs/stable/]
to learn how to visualise [https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html],
read or write [https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html] or how to
access parts of the DataFrame [https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html] to
process them.

The results chapter consists of three parts:

	Collecting results

	General approach

	Easy access

The first step is the processing of the results (Collecting results)
This is followed by basic examples of the general analysis of the results
(General approach) and finally the use of functionality already included in solph
for providing a quick access to your results (Easy access).
Especially for larger energy systems the general approach will help you to
write your own results processing functions.

Collecting results

Collecting results can be done with the help of the processing module. A solved
model is needed:

[...]
model.solve(solver=solver)
results = solph.processing.results(model)

The scalars and sequences describe nodes (with keys like (node, None)) and
flows between nodes (with keys like (node_1, node_2)). You can directly extract
the data in the dictionary by using these keys, where “node” is the name of
the object you want to address.
Processing the results is the prerequisite for the examples in the following
sections.

General approach

As stated above, after processing you will get a dictionary with all result
data.
If you want to access your results directly via labels, you
can continue with Easy access. For a systematic analysis list comprehensions
are the easiest way of filtering and analysing your results.

The keys of the results dictionary are tuples containing two nodes. Since flows
have a starting node and an ending node, you get a list of all flows by
filtering the results using the following expression:

flows = [x for x in results.keys() if x[1] is not None]

On the same way you can get a list of all nodes by applying:

nodes = [x for x in results.keys() if x[1] is None]

Probably you will just get storages as nodes, if you have some in your energy
system. Note, that just nodes containing decision variables are listed, e.g. a
Source or a Transformer object does not have decision variables. These are in
the flows from or to the nodes.

All items within the results dictionary are dictionaries and have two items
with ‘scalars’ and ‘sequences’ as keys:

for flow in flows:
 print(flow)
 print(results[flow]['scalars'])
 print(results[flow]['sequences'])

There many options of filtering the flows and nodes as you prefer.
The following will give you all flows which are outputs of transformer:

flows_from_transformer = [x for x in flows if isinstance(
 x[0], solph.components.Transformer)]

You can filter your flows, if the label of in- or output contains a given
string, e.g.:

flows_to_elec = [x for x in results.keys() if 'elec' in x[1].label]

Getting all labels of the starting node of your investment flows:

flows_invest = [x[0].label for x in flows if hasattr(
 results[x]['scalars'], 'invest')]

Easy access

The solph package provides some functions which will help you to access your
results directly via labels, which is helpful especially for small energy
systems.
So, if you want to address objects by their label, you can convert the results
dictionary such that the keys are changed to strings given by the labels:

views.convert_keys_to_strings(results)
print(results[('wind', 'bus_electricity')]['sequences']

Another option is to access data belonging to a grouping by the name of the grouping
(note also this section on groupings [https://oemof-solph.readthedocs.io/en/latest/usage.html#the-grouping-module-sets].
Given the label of an object, e.g. ‘wind’ you can access the grouping by its label
and use this to extract data from the results dictionary.

node_wind = energysystem.groups['wind']
print(results[(node_wind, bus_electricity)])

However, in many situations it might be convenient to use the views module to
collect information on a specific node. You can request all data related to a
specific node by using either the node’s variable name or its label:

data_wind = solph.views.node(results, 'wind')

A function for collecting and printing meta results, i.e. information on the objective function,
the problem and the solver, is provided as well:

meta_results = solph.processing.meta_results(om)
pp.pprint(meta_results)

API Reference

	oemof.solph.buses.Bus

	oemof.solph.components
	Sink

	Source

	Transformer

	extractionTurbineCHP

	GenericCHP

	GenericStorage

	OffsetTransformer

	experimental.ElectricalLine

	experimental.GenericCAES

	experimental.Link

	experimental.PiecewiseLinearTransformer

	experimental.SinkDSM

	oemof.solph.console_scripts

	oemof.solph.constraints

	oemof.solph.EnergySystem

	oemof.solph.Flow
	Flow

	SimpleFlow

	InvestmentFlow

	NonConvexFlow

	InvestNonConvexFlow

	oemof.solph.groupings

	oemof.solph.helpers

	oemof.solph.models

	oemof.solph.options

	oemof.solph.plumbing

	oemof.solph.processing

	oemof.solph.views

oemof.solph.buses.Bus

	
class oemof.solph.buses._bus.Bus(*args, **kwargs)

	Bases: oemof.network.network.Bus

A balance object. Every node has to be connected to BusBlock.

The sum of all inputs of a Bus object must equal the sum of all outputs
within one time step.

Notes

	The following sets, variables, constraints and objective parts are created

	
	BusBlock

	
constraint_group()

	

	
class oemof.solph.buses._bus.BusBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for all balanced buses.

The sum of all inputs of a Bus object must equal the sum of all outputs
within one time step.

The following constraints are build:

	Bus balance: om.Bus.balance[i, o, t]

	
\[\begin{split}\sum_{i \in INPUTS(n)} P_{i}(t) =
\sum_{o \in OUTPUTS(n)} P_{o}(t), \\
\forall t \in \textrm{TIMESTEPS}, \\
\forall i \in \textrm{INPUTS}, \\
\forall o \in \textrm{OUTPUTS}\end{split}\]

While INPUTS is the set of Component objects connected with the input of
the Bus object and OUPUTS the set of Component objects connected with the
output of the Bus object.

The index \(n\) is the index for the Bus node itself. Therefore,
a \(flow[i, n, t]\) is a flow from the Component i to the Bus n at
time step t.

	symbol

	attribute

	explanation

	\(P_{i}(t)\)

	flow[i, n, t]

	Bus, inflow

	\(P_{o}(t)\)

	flow[n, o, t]

	Bus, outflow

oemof.solph.components

Sink

solph version of oemof.network.Sink

	
class oemof.solph.components._sink.Sink(label=None, inputs=None, custom_attributes=None)

	Bases: oemof.network.network.Sink

A component which is designed for one input flow.

	Parameters

	label (str) – String holding the label of the Sink object.
The label of each object must be unique.

Examples

Defining a Sink:

>>> from oemof import solph
>>> bel = solph.buses.Bus(label='electricity')

>>> electricity_export = solph.components.Sink(
... label='el_export',
... inputs={bel: solph.flows.Flow()})

Notes

It is theoretically possible to use the Sink object with multiple inputs.
However, we strongly recommend using multiple Sink objects instead.

	
constraint_group()

	

Source

solph version of oemof.network.Source

	
class oemof.solph.components._source.Source(label=None, outputs=None, custom_attributes=None)

	Bases: oemof.network.network.Source

A component which is designed for one output flow.

	Parameters

	label (str) – String holding the label of the Source object.
The label of each object must be unique.

Examples

Defining a Source:

>>> from oemof import solph
>>> bel = solph.buses.Bus(label='electricity')

>>> pv_plant = solph.components.Source(
... label='pp_pv',
... outputs={bel: solph.flows.Flow()})

>>> type(pv_plant)
<class 'oemof.solph.components._source.Source'>

>>> pv_plant.label
'pp_pv'

>>> str(pv_plant.outputs[bel].output)
'electricity'

Notes

It is theoretically possible to use the Source object with multiple
outputs. However, we strongly recommend using multiple Source objects
instead.

	
constraint_group()

	

Transformer

solph version of oemof.network.Transformer including
sets, variables, constraints and parts of the objective function
for TransformerBlock objects.

	
class oemof.solph.components._transformer.Transformer(label=None, inputs=None, outputs=None, conversion_factors=None, custom_attributes=None)

	Bases: oemof.network.network.Transformer

A linear converter object with n inputs and n outputs.

Node object that relates any number of inflow and outflows with
conversion factors. Inputs and outputs must be given as dictinaries.

	Parameters

	
	inputs (dict) – Dictionary with inflows. Keys must be the starting node(s) of the
inflow(s).

	outputs (dict) – Dictionary with outflows. Keys must be the ending node(s) of the
outflow(s).

	conversion_factors (dict) – Dictionary containing conversion factors for conversion of each flow.
Keys must be the connected nodes (typically Buses).
The dictionary values can either be a scalar or an iterable with
individual conversion factors for each time step.
Default: 1. If no conversion_factor is given for an in- or outflow, the
conversion_factor is set to 1.

Examples

Defining an linear transformer:

>>> from oemof import solph
>>> bgas = solph.buses.Bus(label='natural_gas')
>>> bcoal = solph.buses.Bus(label='hard_coal')
>>> bel = solph.buses.Bus(label='electricity')
>>> bheat = solph.buses.Bus(label='heat')

>>> trsf = solph.components.Transformer(
... label='pp_gas_1',
... inputs={bgas: solph.flows.Flow(), bcoal: solph.flows.Flow()},
... outputs={bel: solph.flows.Flow(), bheat: solph.flows.Flow()},
... conversion_factors={bel: 0.3, bheat: 0.5,
... bgas: 0.8, bcoal: 0.2})
>>> print(sorted([x[1][5] for x in trsf.conversion_factors.items()]))
[0.2, 0.3, 0.5, 0.8]

>>> type(trsf)
<class 'oemof.solph.components._transformer.Transformer'>

>>> sorted([str(i) for i in trsf.inputs])
['hard_coal', 'natural_gas']

>>> trsf_new = solph.components.Transformer(
... label='pp_gas_2',
... inputs={bgas: solph.flows.Flow()},
... outputs={bel: solph.flows.Flow(), bheat: solph.flows.Flow()},
... conversion_factors={bel: 0.3, bheat: 0.5})
>>> trsf_new.conversion_factors[bgas][3]
1

Notes

	The following sets, variables, constraints and objective parts are created

	
	TransformerBlock

	
constraint_group()

	

	
class oemof.solph.components._transformer.TransformerBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for the linear relation of nodes with type
Transformer

The following constraints are created:

	Linear relation om.Transformer.relation[i,o,t]

	
\[\begin{split}P_{i}(t) \cdot \eta_{o}(t) =
P_{o}(t) \cdot \eta_{i}(t), \\
\forall t \in \textrm{TIMESTEPS}, \\
\forall i \in \textrm{INPUTS}, \\
\forall o \in \textrm{OUTPUTS}\end{split}\]

While INPUTS is the set of Bus objects connected with the input of the
Transformer and OUPUTS the set of Bus objects connected with the output of
the Transformer. The constraint above will be created for all combinations
of INPUTS and OUTPUTS for all TIMESTEPS. A Transformer with two inflows and
two outflows for one day with an hourly resolution will lead to 96
constraints.

The index :math: n is the index for the Transformer node itself. Therefore,
a flow[i, n, t] is a flow from the Bus i to the Transformer n at
time step t.

	symbol

	attribute

	explanation

	\(P_{i}(t)\)

	flow[i, n, t]

	Transformer, inflow

	\(P_{o}(t)\)

	flow[n, o, t]

	Transformer, outflow

	\(\eta_{i}(t)\)

	conversion_factor[i, n, t]

	Inflow, efficiency

	\(\eta_{o}(t)\)

	conversion_factor[n, o, t]

	Outflow, efficiency

extractionTurbineCHP

ExtractionTurbineCHP and associated individual constraints (blocks)
and groupings.

	
class oemof.solph.components._extraction_turbine_chp.ExtractionTurbineCHP(conversion_factor_full_condensation, label=None, inputs=None, outputs=None, conversion_factors=None, custom_attributes=None)

	Bases: oemof.solph.components._transformer.Transformer

A CHP with an extraction turbine in a linear model. For more options see
the GenericCHP class.

One main output flow has to be defined and is tapped by the remaining flow.
The conversion factors have to be defined for the maximum tapped flow (
full CHP mode) and for no tapped flow (full condensing mode). Even though
it is possible to limit the variability of the tapped flow, so that the
full condensing mode will never be reached.

	Parameters

	
	conversion_factors (dict) – Dictionary containing conversion factors for conversion of inflow
to specified outflow. Keys are output bus objects.
The dictionary values can either be a scalar or a sequence with length
of time horizon for simulation.

	conversion_factor_full_condensation (dict) – The efficiency of the main flow if there is no tapped flow. Only one
key is allowed. Use one of the keys of the conversion factors. The key
indicates the main flow. The other output flow is the tapped flow.

Notes

	The following sets, variables, constraints and objective parts are created

	
	ExtractionTurbineCHPBlock

Examples

>>> from oemof import solph
>>> bel = solph.buses.Bus(label='electricityBus')
>>> bth = solph.buses.Bus(label='heatBus')
>>> bgas = solph.buses.Bus(label='commodityBus')
>>> et_chp = solph.components.ExtractionTurbineCHP(
... label='variable_chp_gas',
... inputs={bgas: solph.flows.Flow(nominal_value=10e10)},
... outputs={bel: solph.flows.Flow(), bth: solph.flows.Flow()},
... conversion_factors={bel: 0.3, bth: 0.5},
... conversion_factor_full_condensation={bel: 0.5})

	
constraint_group()

	

	
class oemof.solph.components._extraction_turbine_chp.ExtractionTurbineCHPBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for all instances of
ExtractionTurbineCHP

Variables

The following variables are used:

	\(\dot H_{Fuel}\)

Fuel input flow, represented in code as flow[i,n,t]

	\(P_{el}\)

Electric power outflow, represented in code as
flow[n, main_output, t]

	\(\dot Q_{th}\)

Thermal output flow, represented in code as
flow[n, tapped_output, t]

Parameters

The following parameters are created as attributes of
om.ExtractionTurbineCHP:

	\(\eta_{el,woExtr}\)

Electric efficiency without heat extraction, represented in code as
conversion_factor_full_condensation[n, t]

	\(\eta_{el,maxExtr}\)

Electric efficiency with maximal heat extraction, represented in code
as conversion_factors[main_output][n, t]

	\(\eta_{th,maxExtr}\)

Thermal efficiency with maximal heat extraction, represented in code
as conversion_factors[tapped_output][n, t]

Constraints

The following constraints are created for all
instances of oemof.solph.components.ExtractionTurbineCHP:

\[\begin{split}&
(1)\dot H_{Fuel}(t) =
 \frac{P_{el}(t) + \dot Q_{th}(t) \cdot \beta(t)}
 {\eta_{el,woExtr}(t)} \\
&
(2)P_{el}(t) \geq \dot Q_{th}(t) \cdot C_b\end{split}\]

where:

\[\beta(t) = \frac{\eta_{el,woExtr}(t) -
 \eta_{el,maxExtr}(t)}{\eta_{th,maxExtr}(t)}\]

and:

\[C_b = \frac{\eta_{el,maxExtr}(t)}{\eta_{th,maxExtr}(t)}\]

The first equation is the result of the relation between the input
flow and the two output flows, the second equation stems from how the two
output flows relate to each other.

	
CONSTRAINT_GROUP = True

	

GenericCHP

GenericCHP and associated individual constraints (blocks) and groupings.

	
class oemof.solph.components._generic_chp.GenericCHP(fuel_input, electrical_output, heat_output, beta, back_pressure, label=None, custom_attributes=None)

	Bases: oemof.network.network.Transformer

Component GenericCHP to model combined heat and power plants.

Can be used to model (combined cycle) extraction or back-pressure turbines
and used a mixed-integer linear formulation. Thus, it induces more
computational effort than the ExtractionTurbineCHP for the
benefit of higher accuracy.

The full set of equations is described in:
Mollenhauer, E., Christidis, A. & Tsatsaronis, G.
Evaluation of an energy- and exergy-based generic modeling
approach of combined heat and power plants
Int J Energy Environ Eng (2016) 7: 167.
https://doi.org/10.1007/s40095-016-0204-6

For a general understanding of (MI)LP CHP representation, see:
Fabricio I. Salgado, P.
Short - Term Operation Planning on Cogeneration Systems: A Survey
Electric Power Systems Research (2007)
Electric Power Systems Research
Volume 78, Issue 5, May 2008, Pages 835-848
https://doi.org/10.1016/j.epsr.2007.06.001

Note

An adaption for the flow parameter H_L_FG_share_max has been made to
set the flue gas losses at maximum heat extraction H_L_FG_max as share of
the fuel flow H_F e.g. for combined cycle extraction turbines.
The flow parameter H_L_FG_share_min can be used to set the flue gas
losses at minimum heat extraction H_L_FG_min as share of
the fuel flow H_F e.g. for motoric CHPs.
The boolean component parameter back_pressure can be set to model
back-pressure characteristics.

Also have a look at the examples on how to use it.

	Parameters

	
	fuel_input (dict) – Dictionary with key-value-pair of oemof.Bus and oemof.Flow object
for the fuel input.

	electrical_output (dict) – Dictionary with key-value-pair of oemof.Bus and oemof.Flow object
for the electrical output. Related parameters like P_max_woDH are
passed as attributes of the oemof.Flow object.

	heat_output (dict) – Dictionary with key-value-pair of oemof.Bus and oemof.Flow object
for the heat output. Related parameters like Q_CW_min are passed as
attributes of the oemof.Flow object.

	beta (list of numerical values) – beta values in same dimension as all other parameters (length of
optimization period).

	back_pressure (boolean) – Flag to use back-pressure characteristics. Set to True and
Q_CW_min to zero for back-pressure turbines. See paper above for more
information.

Note

	The following sets, variables, constraints and objective parts are created

	
	GenericCHPBlock

Examples

>>> from oemof import solph
>>> bel = solph.buses.Bus(label='electricityBus')
>>> bth = solph.buses.Bus(label='heatBus')
>>> bgas = solph.buses.Bus(label='commodityBus')
>>> ccet = solph.components.GenericCHP(
... label='combined_cycle_extraction_turbine',
... fuel_input={bgas: solph.flows.Flow(
... custom_attributes={"H_L_FG_share_max": [0.183]})},
... electrical_output={bel: solph.flows.Flow(
... custom_attributes={
... "P_max_woDH": [155.946],
... "P_min_woDH": [68.787],
... "Eta_el_max_woDH": [0.525],
... "Eta_el_min_woDH": [0.444],
... })},
... heat_output={bth: solph.flows.Flow(
... custom_attributes={"Q_CW_min": [10.552]})},
... beta=[0.122], back_pressure=False)
>>> type(ccet)
<class 'oemof.solph.components._generic_chp.GenericCHP'>

	
alphas

	Compute or return the _alphas attribute.

	
constraint_group()

	

	
class oemof.solph.components._generic_chp.GenericCHPBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for the relation of the \(n\) nodes with
type class:.GenericCHP.

The following constraints are created:

\[\begin{split}&
(1)\qquad \dot{H}_F(t) = fuel\ input \\
&
(2)\qquad \dot{Q}(t) = heat\ output \\
&
(3)\qquad P_{el}(t) = power\ output\\
&
(4)\qquad \dot{H}_F(t) = \alpha_0(t) \cdot Y(t) + \alpha_1(t) \cdot
P_{el,woDH}(t)\\
&
(5)\qquad \dot{H}_F(t) = \alpha_0(t) \cdot Y(t) + \alpha_1(t) \cdot
(P_{el}(t) + \beta \cdot \dot{Q}(t))\\
&
(6)\qquad \dot{H}_F(t) \leq Y(t) \cdot
\frac{P_{el, max, woDH}(t)}{\eta_{el,max,woDH}(t)}\\
&
(7)\qquad \dot{H}_F(t) \geq Y(t) \cdot
\frac{P_{el, min, woDH}(t)}{\eta_{el,min,woDH}(t)}\\
&
(8)\qquad \dot{H}_{L,FG,max}(t) = \dot{H}_F(t) \cdot
\dot{H}_{L,FG,sharemax}(t)\\
&
(9)\qquad \dot{H}_{L,FG,min}(t) = \dot{H}_F(t) \cdot
\dot{H}_{L,FG,sharemin}(t)\\
&
(10)\qquad P_{el}(t) + \dot{Q}(t) + \dot{H}_{L,FG,max}(t) +
\dot{Q}_{CW, min}(t) \cdot Y(t) = / \leq \dot{H}_F(t)\\\end{split}\]

where \(= / \leq\) depends on the CHP being back pressure or not.

The coefficients \(\alpha_0\) and \(\alpha_1\)
can be determined given the efficiencies maximal/minimal load:

\[\begin{split}&
\eta_{el,max,woDH}(t) = \frac{P_{el,max,woDH}(t)}{\alpha_0(t)
\cdot Y(t) + \alpha_1(t) \cdot P_{el,max,woDH}(t)}\\
&
\eta_{el,min,woDH}(t) = \frac{P_{el,min,woDH}(t)}{\alpha_0(t)
\cdot Y(t) + \alpha_1(t) \cdot P_{el,min,woDH}(t)}\\\end{split}\]

For the attribute \(\dot{H}_{L,FG,min}\) being not None,
e.g. for a motoric CHP, the following is created:

Constraint:

\[\begin{split}&
(11)\qquad P_{el}(t) + \dot{Q}(t) + \dot{H}_{L,FG,min}(t) +
\dot{Q}_{CW, min}(t) \cdot Y(t) \geq \dot{H}_F(t)\\[10pt]\end{split}\]

The symbols used are defined as follows (with Variables (V) and Parameters (P)):

	math. symbol

	attribute

	type

	explanation

	\(\dot{H}_{F}\)

	H_F[n,t]

	V

	input of enthalpy through fuel input

	\(P_{el}\)

	P[n,t]

	V

	provided electric power

	\(P_{el,woDH}\)

	P_woDH[n,t]

	V

	electric power without district heating

	\(P_{el,min,woDH}\)

	P_min_woDH[n,t]

	P

	min. electric power without district heating

	\(P_{el,max,woDH}\)

	P_max_woDH[n,t]

	P

	max. electric power without district heating

	\(\dot{Q}\)

	Q[n,t]

	V

	provided heat

	\(\dot{Q}_{CW, min}\)

	Q_CW_min[n,t]

	P

	minimal therm. condenser load to cooling water

	\(\dot{H}_{L,FG,min}\)

	H_L_FG_min[n,t]

	V

	flue gas enthalpy loss at min heat extraction

	\(\dot{H}_{L,FG,max}\)

	H_L_FG_max[n,t]

	V

	flue gas enthalpy loss at max heat extraction

	\(\dot{H}_{L,FG,sharemin}\)

	H_L_FG_share_min[n,t]

	P

	share of flue gas loss at min heat extraction

	\(\dot{H}_{L,FG,sharemax}\)

	H_L_FG_share_max[n,t]

	P

	share of flue gas loss at max heat extraction

	\(Y\)

	Y[n,t]

	V

	status variable on/off

	\(\alpha_0\)

	n.alphas[0][n,t]

	P

	coefficient describing efficiency

	\(\alpha_1\)

	n.alphas[1][n,t]

	P

	coefficient describing efficiency

	\(\beta\)

	beta[n,t]

	P

	power loss index

	\(\eta_{el,min,woDH}\)

	Eta_el_min_woDH[n,t]

	P

	el. eff. at min. fuel flow w/o distr. heating

	\(\eta_{el,max,woDH}\)

	Eta_el_max_woDH[n,t]

	P

	el. eff. at max. fuel flow w/o distr. heating

	
CONSTRAINT_GROUP = True

	

GenericStorage

GenericStorage and associated individual constraints (blocks) and groupings.

	
class oemof.solph.components._generic_storage.GenericInvestmentStorageBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for all storages with Investment being not None.
See oemof.solph.options.Investment for all parameters of the
Investment class.

Variables

All Storages are indexed by \(n\), which is omitted in the following
for the sake of convenience.
The following variables are created as attributes of
om.InvestmentStorage:

	\(P_i(t)\)

Inflow of the storage
(created in oemof.solph.models.BaseModel).

	\(P_o(t)\)

Outflow of the storage
(created in oemof.solph.models.BaseModel).

	\(E(t)\)

Current storage content (Absolute level of stored energy).

	\(E_{invest}\)

Invested (nominal) capacity of the storage.

	\(E(-1)\)

Initial storage content (before timestep 0).

	\(b_{invest}\)

Binary variable for the status of the investment, if
nonconvex is True.

Constraints

The following constraints are created for all investment storages:

Storage balance (Same as for GenericStorageBlock)

\[\begin{split}E(t) = &E(t-1) \cdot
(1 - \beta(t)) ^{\tau(t)/(t_u)} \\
&- \gamma(t)\cdot (E_{exist} + E_{invest}) \cdot {\tau(t)/(t_u)}\\
&- \delta(t) \cdot {\tau(t)/(t_u)}\\
&- \frac{P_o(t)}{\eta_o(t)} \cdot \tau(t)
+ P_i(t) \cdot \eta_i(t) \cdot \tau(t)\end{split}\]

Depending on the attribute nonconvex, the constraints for the
bounds of the decision variable \(E_{invest}\) are different:

	nonconvex = False

\[E_{invest, min} \le E_{invest} \le E_{invest, max}\]

	nonconvex = True

\[\begin{split}&
E_{invest, min} \cdot b_{invest} \le E_{invest}\\
&
E_{invest} \le E_{invest, max} \cdot b_{invest}\\\end{split}\]

The following constraints are created depending on the attributes of
the components.GenericStorage:

	initial_storage_level is None

Constraint for a variable initial storage content:

\[E(-1) \le E_{invest} + E_{exist}\]

	initial_storage_level is not None

An initial value for the storage content is given:

\[E(-1) = (E_{invest} + E_{exist}) \cdot c(-1)\]

	balanced=True

The energy content of storage of the first and the last timestep
are set equal:

\[E(-1) = E(t_{last})\]

	invest_relation_input_capacity is not None

Connect the invest variables of the storage and the input flow:

\[P_{i,invest} + P_{i,exist} =
(E_{invest} + E_{exist}) \cdot r_{cap,in}\]

	invest_relation_output_capacity is not None

Connect the invest variables of the storage and the output flow:

\[P_{o,invest} + P_{o,exist} =
(E_{invest} + E_{exist}) \cdot r_{cap,out}\]

	invest_relation_input_output is not None

Connect the invest variables of the input and the output flow:

\[P_{i,invest} + P_{i,exist} =
(P_{o,invest} + P_{o,exist}) \cdot r_{in,out}\]

	max_storage_level

Rule for upper bound constraint for the storage content:

\[E(t) \leq E_{invest} \cdot c_{max}(t)\]

	min_storage_level

Rule for lower bound constraint for the storage content:

\[E(t) \geq E_{invest} \cdot c_{min}(t)\]

Objective function

The part of the objective function added by the investment storages
also depends on whether a convex or nonconvex
investment option is selected. The following parts of the objective
function are created:

	nonconvex = False

\[E_{invest} \cdot c_{invest,var}\]

	nonconvex = True

\[\begin{split}E_{invest} \cdot c_{invest,var}
+ c_{invest,fix} \cdot b_{invest}\\\end{split}\]

The total value of all investment costs of all InvestmentStorages
can be retrieved calling
om.GenericInvestmentStorageBlock.investment_costs.expr().

List of Variables

	symbol

	attribute

	explanation

	\(P_i(t)\)

	flow[i[n], n, t]

	Inflow of the storage

	\(P_o(t)\)

	flow[n, o[n], t]

	Outlfow of the storage

	\(E(t)\)

	storage_content[n, t]

	Current storage
content (current absolute stored energy)

	\(E_{invest}\)

	invest[n, t]

	Invested (nominal)
capacity of the storage

	\(E(-1)\)

	init_cap[n]

	Initial storage capacity
(before timestep 0)

	\(b_{invest}\)

	invest_status[i, o]

	Binary variable
for the status of investment

	\(P_{i,invest}\)

	InvestmentFlowBlock.invest[i[n], n]

	

	Invested (nominal) inflow (Investmentflow)

	
	

	\(P_{o,invest}\)

	InvestmentFlowBlock.invest[n, o[n]]

	

	Invested (nominal) outflow (Investmentflow)

	
	

List of Parameters

	symbol

	attribute

	explanation

	\(E_{exist}\)

	flows[i, o].investment.existing

	Existing storage capacity

	\(E_{invest,min}\)

	flows[i, o].investment.minimum

	Minimum investment value

	\(E_{invest,max}\)

	flows[i, o].investment.maximum

	Maximum investment value

	\(P_{i,exist}\)

	flows[i[n], n].investment.existing

	Existing inflow capacity

	\(P_{o,exist}\)

	flows[n, o[n]].investment.existing

	Existing outlfow capacity

	\(c_{invest,var}\)

	flows[i, o].investment.ep_costs

	Variable investment costs

	\(c_{invest,fix}\)

	flows[i, o].investment.offset

	Fix investment costs

	\(r_{cap,in}\)

	invest_relation_input_capacity

	Relation of storage capacity and nominal inflow

	\(r_{cap,out}\)

	invest_relation_output_capacity

	Relation of storage capacity and nominal outflow

	\(r_{in,out}\)

	invest_relation_input_output

	Relation of nominal in- and outflow

	\(\beta(t)\)

	loss_rate[t]

	Fraction of lost energy
as share of \(E(t)\) per time unit

	\(\gamma(t)\)

	fixed_losses_relative[t]

	Fixed loss
of energy relative to \(E_{invest} + E_{exist}\) per time unit

	\(\delta(t)\)

	fixed_losses_absolute[t]

	Absolute
fixed loss of energy per time unit

	\(\eta_i(t)\)

	inflow_conversion_factor[t]

	Conversion factor (i.e. efficiency) when storing energy

	\(\eta_o(t)\)

	outflow_conversion_factor[t]

	Conversion factor when (i.e. efficiency) taking stored energy

	\(c(-1)\)

	initial_storage_level

	Initial relativ
storage content (before timestep 0)

	\(c_{max}\)

	flows[i, o].max[t]

	Normed maximum
value of storage content

	\(c_{min}\)

	flows[i, o].min[t]

	Normed minimum
value of storage content

	\(\tau(t)\)

	
	Duration of time step

	\(t_u\)

	
	Time unit of losses \(\beta(t)\),
\(\gamma(t)\), \(\delta(t)\) and timeincrement \(\tau(t)\)

	
CONSTRAINT_GROUP = True

	

	
class oemof.solph.components._generic_storage.GenericStorage(label=None, inputs=None, outputs=None, nominal_storage_capacity=None, initial_storage_level=None, investment=None, invest_relation_input_output=None, invest_relation_input_capacity=None, invest_relation_output_capacity=None, min_storage_level=0, max_storage_level=1, balanced=True, loss_rate=0, fixed_losses_relative=0, fixed_losses_absolute=0, inflow_conversion_factor=1, outflow_conversion_factor=1, custom_attributes=None)

	Bases: oemof.network.network.Node

Component GenericStorage to model with basic characteristics of storages.

The GenericStorage is designed for one input and one output.

	Parameters

	
	nominal_storage_capacity (numeric, \(E_{nom}\)) – Absolute nominal capacity of the storage

	invest_relation_input_capacity (numeric or None, \(r_{cap,in}\)) – Ratio between the investment variable of the input Flow and the
investment variable of the storage:
\(\dot{E}_{in,invest} = E_{invest} \cdot r_{cap,in}\)

	invest_relation_output_capacity (numeric or None, \(r_{cap,out}\)) – Ratio between the investment variable of the output Flow and the
investment variable of the storage:
\(\dot{E}_{out,invest} = E_{invest} \cdot r_{cap,out}\)

	invest_relation_input_output (numeric or None, \(r_{in,out}\)) – Ratio between the investment variable of the output Flow and the
investment variable of the input flow. This ratio used to fix the
flow investments to each other.
Values < 1 set the input flow lower than the output and > 1 will
set the input flow higher than the output flow. If None no relation
will be set:
\(\dot{E}_{in,invest} = \dot{E}_{out,invest} \cdot r_{in,out}\)

	initial_storage_level (numeric, \(c(-1)\)) – The relative storage content in the timestep before the first
time step of optimization (between 0 and 1).

	balanced (boolean) – Couple storage level of first and last time step.
(Total inflow and total outflow are balanced.)

	loss_rate (numeric (iterable or scalar)) – The relative loss of the storage content per hour.

	fixed_losses_relative (numeric (iterable or scalar), \(\gamma(t)\)) – Losses per hour that are independent of the storage content but
proportional to nominal storage capacity.

	fixed_losses_absolute (numeric (iterable or scalar), \(\delta(t)\)) – Losses per hour that are independent of storage content and independent
of nominal storage capacity.

	inflow_conversion_factor (numeric (iterable or scalar), \(\eta_i(t)\)) – The relative conversion factor, i.e. efficiency associated with the
inflow of the storage.

	outflow_conversion_factor (numeric (iterable or scalar), \(\eta_o(t)\)) – see: inflow_conversion_factor

	min_storage_level (numeric (iterable or scalar), \(c_{min}(t)\)) – The normed minimum storage content as fraction of the
nominal storage capacity (between 0 and 1).
To set different values in every time step use a sequence.

	max_storage_level (numeric (iterable or scalar), \(c_{max}(t)\)) – see: min_storage_level

	investment (oemof.solph.options.Investment object) – Object indicating if a nominal_value of the flow is determined by
the optimization problem. Note: This will refer all attributes to an
investment variable instead of to the nominal_storage_capacity. The
nominal_storage_capacity should not be set (or set to None) if an
investment object is used.

Notes

	The following sets, variables, constraints and objective parts are created

	
	GenericStorageBlock
(if no Investment object present)

	GenericInvestmentStorageBlock
(if Investment object present)

Examples

Basic usage examples of the GenericStorage with a random selection of
attributes. See the Flow class for all Flow attributes.

>>> from oemof import solph

>>> my_bus = solph.buses.Bus('my_bus')

>>> my_storage = solph.components.GenericStorage(
... label='storage',
... nominal_storage_capacity=1000,
... inputs={my_bus: solph.flows.Flow(nominal_value=200, variable_costs=10)},
... outputs={my_bus: solph.flows.Flow(nominal_value=200)},
... loss_rate=0.01,
... initial_storage_level=0,
... max_storage_level = 0.9,
... inflow_conversion_factor=0.9,
... outflow_conversion_factor=0.93)

>>> my_investment_storage = solph.components.GenericStorage(
... label='storage',
... investment=solph.Investment(ep_costs=50),
... inputs={my_bus: solph.flows.Flow()},
... outputs={my_bus: solph.flows.Flow()},
... loss_rate=0.02,
... initial_storage_level=None,
... invest_relation_input_capacity=1/6,
... invest_relation_output_capacity=1/6,
... inflow_conversion_factor=1,
... outflow_conversion_factor=0.8)

	
constraint_group()

	

	
class oemof.solph.components._generic_storage.GenericStorageBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Storage without an Investment object.

The following sets are created: (-> see basic sets at
Model)

	STORAGES

	
	A set with all Storage objects, which do not have an

	attr:investment of type Investment.

	STORAGES_BALANCED

	A set of all GenericStorage objects, with ‘balanced’ attribute set
to True.

	STORAGES_WITH_INVEST_FLOW_REL

	A set with all Storage objects with two investment flows
coupled with the ‘invest_relation_input_output’ attribute.

The following variables are created:

	storage_content

	Storage content for every storage and timestep. The value for the
storage content at the beginning is set by the parameter
initial_storage_level or not set if initial_storage_level is None.
The variable of storage s and timestep t can be accessed by:
om.Storage.storage_content[s, t]

The following constraints are created:

	Set storage_content of last time step to one at t=0 if balanced == True

	
\[E(t_{last}) = &E(-1)\]

	Storage balance om.Storage.balance[n, t]

	
\[\begin{split}E(t) = &E(t-1) \cdot
(1 - \beta(t)) ^{\tau(t)/(t_u)} \\
&- \gamma(t)\cdot E_{nom} \cdot {\tau(t)/(t_u)}\\
&- \delta(t) \cdot {\tau(t)/(t_u)}\\
&- \frac{\dot{E}_o(t)}{\eta_o(t)} \cdot \tau(t)
+ \dot{E}_i(t) \cdot \eta_i(t) \cdot \tau(t)\end{split}\]

	Connect the invest variables of the input and the output flow.

	
\[\begin{split}InvestmentFlowBlock.invest(source(n), n) + existing = \\
(InvestmentFlowBlock.invest(n, target(n)) + existing) * \\
invest_relation_input_output(n) \\
\forall n \in \textrm{INVEST_REL_IN_OUT}\end{split}\]

	symbol

	explanation

	attribute

	\(E(t)\)

	energy currently stored

	storage_content

	\(E_{nom}\)

	nominal capacity of
the energy storage

	nominal_storage_capacity

	\(c(-1)\)

	state before
initial time step

	initial_storage_level

	\(c_{min}(t)\)

	minimum allowed storage

	min_storage_level[t]

	\(c_{max}(t)\)

	maximum allowed storage

	max_storage_level[t]

	\(\beta(t)\)

	fraction of lost energy
as share of
\(E(t)\) per hour

	loss_rate[t]

	\(\gamma(t)\)

	fixed loss of energy
relative to
\(E_{nom}\) per
hour

	fixed_losses_relative[t]

	\(\delta(t)\)

	absolute fixed loss
of energy per hour

	fixed_losses_absolute[t]

	\(\dot{E}_i(t)\)

	energy flowing in

	inputs

	\(\dot{E}_o(t)\)

	energy flowing out

	outputs

	\(\eta_i(t)\)

	conversion factor
(i.e. efficiency)
when storing energy

	inflow_conversion_factor[t]

	\(\eta_o(t)\)

	conversion factor when
(i.e. efficiency)
taking stored energy

	outflow_conversion_factor[t]

	\(\tau(t)\)

	duration of time step

	

	\(t_u\)

	time unit of losses
\(\beta(t)\),
\(\gamma(t)\)
\(\delta(t)\) and
timeincrement
\(\tau(t)\)

	

The following parts of the objective function are created:

Nothing added to the objective function.

	
CONSTRAINT_GROUP = True

	

OffsetTransformer

OffsetTransformer and associated individual constraints (blocks) and groupings.

	
class oemof.solph.components._offset_transformer.OffsetTransformer(inputs, outputs, label=None, coefficients=None, custom_attributes=None)

	Bases: oemof.network.network.Transformer

An object with one input and one output and two coefficients to model
part load behaviour.

	Parameters

	coefficients (tuple, (\(C_0(t)\), \(C_1(t)\))) – Tuple containing the first two polynomial coefficients
i.e. the y-intersection and slope of a linear equation.
The tuple values can either be a scalar or a sequence with length
of time horizon for simulation.

Notes

	The sets, variables, constraints and objective parts are created

	
	OffsetTransformerBlock

Examples

>>> from oemof import solph

>>> bel = solph.buses.Bus(label='bel')
>>> bth = solph.buses.Bus(label='bth')

>>> ostf = solph.components.OffsetTransformer(
... label='ostf',
... inputs={bel: solph.flows.Flow(
... nominal_value=60, min=0.5, max=1.0,
... nonconvex=solph.NonConvex())},
... outputs={bth: solph.flows.Flow()},
... coefficients=(20, 0.5))

>>> type(ostf)
<class 'oemof.solph.components._offset_transformer.OffsetTransformer'>

	
constraint_group()

	

	
class oemof.solph.components._offset_transformer.OffsetTransformerBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for the relation of nodes with type
OffsetTransformer

The following constraints are created:

\[\begin{split}&
P_{out}(t) = C_1(t) \cdot P_{in}(t) + C_0(t) \cdot Y(t) \\\end{split}\]

The symbols used are defined as follows (with Variables (V) and Parameters (P)):

	symbol

	attribute

	type

	explanation

	\(P_{out}(t)\)

	flow[n,o,t]

	V

	Outflow of transformer

	\(P_{in}(t)\)

	flow[i,n,t]

	V

	Inflow of transformer

	\(Y(t)\)

	status[i,n,t]

	V

	Binary status variable of nonconvex inflow

	\(C_1(t)\)

	coefficients[1][n,t]

	P

	Linear coefficient 1 (slope)

	\(C_0(t)\)

	coefficients[0][n,t]

	P

	Linear coefficient 0 (y-intersection)

	
CONSTRAINT_GROUP = True

	

experimental.ElectricalLine

In-development electrical line components.

	
class oemof.solph.flows.experimental._electrical_line.ElectricalLine(**kwargs)

	Bases: oemof.solph.flows._flow.Flow

An ElectricalLine to be used in linear optimal power flow calculations.
based on angle formulation. Check out the Notes below before using this
component!

	Parameters

	
	reactance (float or array of floats) – Reactance of the line to be modelled

	Note (This component is experimental. Use it with care.)

Notes

	To use this object the connected buses need to be of the type
ElectricalBus.

	It does not work together with flows that have set the attr.`nonconvex`,
i.e. unit commitment constraints are not possible

	Input and output of this component are set equal, therefore just use
either only the input or the output to parameterize.

	Default attribute min of in/outflows is overwritten by -1 if not set
differently by the user

	The following sets, variables, constraints and objective parts are created

	
	ElectricalLineBlock

	
constraint_group()

	

	
class oemof.solph.flows.experimental._electrical_line.ElectricalLineBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for the linear relation of nodes with type
class:.ElectricalLine

Note: This component is experimental. Use it with care.

The following constraints are created:

	Linear relation om.ElectricalLine.electrical_flow[n,t]

	
\[\begin{split}flow(n, o, t) = 1 / reactance(n, t) \\cdot ()
voltage_angle(i(n), t) - volatage_angle(o(n), t), \\
\forall t \\in \\textrm{TIMESTEPS}, \\
\forall n \\in \\textrm{ELECTRICAL_LINES}.\end{split}\]

TODO: Add equate constraint of flows

The following variable are created:

TODO: Add voltage angle variable

TODO: Add fix slack bus voltage angle to zero constraint / bound

TODO: Add tests

	
CONSTRAINT_GROUP = True

	

experimental.GenericCAES

In-development generic compressed air energy storage.

	
class oemof.solph.components.experimental._generic_caes.GenericCAES(*args, **kwargs)

	Bases: oemof.network.network.Transformer

Component GenericCAES to model arbitrary compressed air energy storages.

The full set of equations is described in:
Kaldemeyer, C.; Boysen, C.; Tuschy, I.
A Generic Formulation of Compressed Air Energy Storage as
Mixed Integer Linear Program – Unit Commitment of Specific
Technical Concepts in Arbitrary Market Environments
Materials Today: Proceedings 00 (2018) 0000–0000
[currently in review]

	Parameters

	
	electrical_input (dict) – Dictionary with key-value-pair of oemof.Bus and oemof.Flow object
for the electrical input.

	fuel_input (dict) – Dictionary with key-value-pair of oemof.Bus and oemof.Flow object
for the fuel input.

	electrical_output (dict) – Dictionary with key-value-pair of oemof.Bus and oemof.Flow object
for the electrical output.

	Note (This component is experimental. Use it with care.)

Notes

	The following sets, variables, constraints and objective parts are created

	
	GenericCAES

Examples

>>> from oemof import solph
>>> bel = solph.buses.Bus(label='bel')
>>> bth = solph.buses.Bus(label='bth')
>>> bgas = solph.buses.Bus(label='bgas')
>>> # dictionary with parameters for a specific CAES plant
>>> concept = {
... 'cav_e_in_b': 0,
... 'cav_e_in_m': 0.6457267578,
... 'cav_e_out_b': 0,
... 'cav_e_out_m': 0.3739636077,
... 'cav_eta_temp': 1.0,
... 'cav_level_max': 211.11,
... 'cmp_p_max_b': 86.0918959849,
... 'cmp_p_max_m': 0.0679999932,
... 'cmp_p_min': 1,
... 'cmp_q_out_b': -19.3996965679,
... 'cmp_q_out_m': 1.1066036114,
... 'cmp_q_tes_share': 0,
... 'exp_p_max_b': 46.1294016678,
... 'exp_p_max_m': 0.2528340303,
... 'exp_p_min': 1,
... 'exp_q_in_b': -2.2073411014,
... 'exp_q_in_m': 1.129249765,
... 'exp_q_tes_share': 0,
... 'tes_eta_temp': 1.0,
... 'tes_level_max': 0.0}
>>> # generic compressed air energy storage (caes) plant
>>> caes = solph.components.experimental.GenericCAES(
... label='caes',
... electrical_input={bel: solph.flows.Flow()},
... fuel_input={bgas: solph.flows.Flow()},
... electrical_output={bel: solph.flows.Flow()},
... params=concept, fixed_costs=0)
>>> type(caes)
<class 'oemof.solph.components.experimental._generic_caes.GenericCAES'>

	
constraint_group()

	

	
class oemof.solph.components.experimental._generic_caes.GenericCAESBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for nodes of class:.GenericCAES.

Note: This component is experimental. Use it with care.

The following constraints are created:

\[\begin{split}&
(1) \qquad P_{cmp}(t) = electrical_input (t)
 \quad \forall t \in T \\
&
(2) \qquad P_{cmp_max}(t) = m_{cmp_max} \cdot CAS_{fil}(t-1)
 + b_{cmp_max}
 \quad \forall t \in\left[1, t_{max}\right] \\
&
(3) \qquad P_{cmp_max}(t) = b_{cmp_max}
 \quad \forall t \notin\left[1, t_{max}\right] \\
&
(4) \qquad P_{cmp}(t) \leq P_{cmp_max}(t)
 \quad \forall t \in T \\
&
(5) \qquad P_{cmp}(t) \geq P_{cmp_min} \cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(6) \qquad P_{cmp}(t) = m_{cmp_max} \cdot CAS_{fil_max}
 + b_{cmp_max} \cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(7) \qquad \dot{Q}_{cmp}(t) =
 m_{cmp_q} \cdot P_{cmp}(t) + b_{cmp_q} \cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(8) \qquad \dot{Q}_{cmp}(t) = \dot{Q}_{cmp_out}(t)
 + \dot{Q}_{tes_in}(t)
 \quad \forall t \in T \\
&
(9) \qquad r_{cmp_tes} \cdot\dot{Q}_{cmp_out}(t) =
 \left(1-r_{cmp_tes}\right) \dot{Q}_{tes_in}(t)
 \quad \forall t \in T \\
&
(10) \quad\; P_{exp}(t) = electrical_output (t)
 \quad \forall t \in T \\
&
(11) \quad\; P_{exp_max}(t) = m_{exp_max} CAS_{fil}(t-1)
 + b_{exp_max}
 \quad \forall t \in\left[1, t_{\max }\right] \\
&
(12) \quad\; P_{exp_max}(t) = b_{exp_max}
 \quad \forall t \notin\left[1, t_{\max }\right] \\
&
(13) \quad\; P_{exp}(t) \leq P_{exp_max}(t)
 \quad \forall t \in T \\
&
(14) \quad\; P_{exp}(t) \geq P_{exp_min}(t) \cdot ST_{exp}(t)
 \quad \forall t \in T \\
&
(15) \quad\; P_{exp}(t) \leq m_{exp_max} \cdot CAS_{fil_max}
 + b_{exp_max} \cdot ST_{exp}(t)
 \quad \forall t \in T \\
&
(16) \quad\; \dot{Q}_{exp}(t) = m_{exp_q} \cdot P_{exp}(t)
 + b_{cxp_q} \cdot ST_{cxp}(t)
 \quad \forall t \in T \\
&
(17) \quad\; \dot{Q}_{exp_in}(t) = fuel_input(t)
 \quad \forall t \in T \\
&
(18) \quad\; \dot{Q}_{exp}(t) = \dot{Q}_{exp_in}(t)
 + \dot{Q}_{tes_out}(t)+\dot{Q}_{cxp_add}(t)
 \quad \forall t \in T \\
&
(19) \quad\; r_{exp_tes} \cdot \dot{Q}_{exp_in}(t) =
 (1 - r_{exp_tes})(\dot{Q}_{tes_out}(t) + \dot{Q}_{exp_add}(t))
 \quad \forall t \in T \\
&
(20) \quad\; \dot{E}_{cas_in}(t) = m_{cas_in}\cdot P_{cmp}(t)
 + b_{cas_in}\cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(21) \quad\; \dot{E}_{cas_out}(t) = m_{cas_out}\cdot P_{cmp}(t)
 + b_{cas_out}\cdot ST_{cmp}(t)
 \quad \forall t \in T \\
&
(22) \quad\; \eta_{cas_tmp} \cdot CAS_{fil}(t) = CAS_{fil}(t-1)
 + \tau\left(\dot{E}_{cas_in}(t) - \dot{E}_{cas_out}(t)\right)
 \quad \forall t \in\left[1, t_{max}\right] \\
 &
(23) \quad\; \eta_{cas_tmp} \cdot CAS_{fil}(t) =
 \tau\left(\dot{E}_{cas_in}(t) - \dot{E}_{cas_out}(t)\right)
 \quad \forall t \notin\left[1, t_{max}\right] \\
&
(24) \quad\; CAS_{fil}(t) \leq CAS_{fil_max}
 \quad \forall t \in T \\
&
(25) \quad\; TES_{fil}(t) = TES_{fil}(t-1)
 + \tau\left(\dot{Q}_{tes_in}(t)
 - \dot{Q}_{tes_out}(t)\right)
 \quad \forall t \in\left[1, t_{max}\right] \\
 &
(26) \quad\; TES_{fil}(t) =
 \tau\left(\dot{Q}_{tes_in}(t)
 - \dot{Q}_{tes_out}(t)\right)
 \quad \forall t \notin\left[1, t_{max}\right] \\
&
(27) \quad\; TES_{fil}(t) \leq TES_{fil_max}
 \quad \forall t \in T \\
&\end{split}\]

Table: Symbols and attribute names of variables and parameters

Variables (V) and Parameters (P)

	symbol

	attribute

	type

	explanation

	\(ST_{cmp}\)

	cmp_st[n,t]

	V

	Status of
compression

	\({P}_{cmp}\)

	cmp_p[n,t]

	V

	Compression power

	\({P}_{cmp_max}\)

	cmp_p_max[n,t]

	V

	Max.
compression power

	\(\dot{Q}_{cmp}\)

	cmp_q_out_sum[n,t]

	V

	Summed
heat flow in compression

	\(\dot{Q}_{cmp_out}\)

	cmp_q_waste[n,t]

	V

	Waste heat flow from compression

	\(ST_{exp}(t)\)

	exp_st[n,t]

	V

	Status of
expansion (binary)

	\(P_{exp}(t)\)

	exp_p[n,t]

	V

	Expansion power

	\(P_{exp_max}(t)\)

	exp_p_max[n,t]

	V

	Max.
expansion power

	\(\dot{Q}_{exp}(t)\)

	exp_q_in_sum[n,t]

	V

	Summed heat flow in expansion

	\(\dot{Q}_{exp_in}(t)\)

	exp_q_fuel_in[n,t]

	V

	Heat (external) flow into expansion

	\(\dot{Q}_{exp_add}(t)\)

	exp_q_add_in[n,t]

	V

	Additional heat flow into expansion

	\(CAV_{fil}(t)\)

	cav_level[n,t]

	V

	Filling level
if CAE

	\(\dot{E}_{cas_in}(t)\)

	cav_e_in[n,t]

	V

	Exergy flow into CAS

	\(\dot{E}_{cas_out}(t)\)

	cav_e_out[n,t]

	V

	Exergy flow from CAS

	\(TES_{fil}(t)\)

	tes_level[n,t]

	V

	Filling
level of Thermal Energy Storage (TES)

	\(\dot{Q}_{tes_in}(t)\)

	tes_e_in[n,t]

	V

	Heat
flow into TES

	\(\dot{Q}_{tes_out}(t)\)

	tes_e_out[n,t]

	V

	Heat
flow from TES

	\(b_{cmp_max}\)

	cmp_p_max_b[n,t]

	P

	Specific
y-intersection

	\(b_{cmp_q}\)

	cmp_q_out_b[n,t]

	P

	Specific
y-intersection

	\(b_{exp_max}\)

	exp_p_max_b[n,t]

	P

	Specific
y-intersection

	\(b_{exp_q}\)

	exp_q_in_b[n,t]

	P

	Specific
y-intersection

	\(b_{cas_in}\)

	cav_e_in_b[n,t]

	P

	Specific
y-intersection

	\(b_{cas_out}\)

	cav_e_out_b[n,t]

	P

	Specific
y-intersection

	\(m_{cmp_max}\)

	cmp_p_max_m[n,t]

	P

	Specific
slope

	\(m_{cmp_q}\)

	cmp_q_out_m[n,t]

	P

	Specific
slope

	\(m_{exp_max}\)

	exp_p_max_m[n,t]

	P

	Specific
slope

	\(m_{exp_q}\)

	exp_q_in_m[n,t]

	P

	Specific
slope

	\(m_{cas_in}\)

	cav_e_in_m[n,t]

	P

	Specific
slope

	\(m_{cas_out}\)

	cav_e_out_m[n,t]

	P

	Specific
slope

	\(P_{cmp_min}\)

	cmp_p_min[n,t]

	P

	Min.
compression power

	\(r_{cmp_tes}\)

	cmp_q_tes_share[n,t]

	P

	Ratio
between waste heat flow and heat flow into TES

	\(r_{exp_tes}\)

	exp_q_tes_share[n,t]

	P

	
Ratio between external heat flow into expansion

and heat flows from TES and additional source

	\(\tau\)

	m.timeincrement[n,t]

	P

	Time interval
length

	\(TES_{fil_max}\)

	tes_level_max[n,t]

	P

	Max.
filling level of TES

	\(CAS_{fil_max}\)

	cav_level_max[n,t]

	P

	Max.
filling level of TES

	\(\tau\)

	cav_eta_tmp[n,t]

	P

	
Temporal efficiency

(loss factor to take intertemporal losses into account)

	\(electrical_input\)

	flow[list(n.electrical_input.keys())[0], n, t]

	P

	Electr. power input into compression

	\(electrical_output\)

	flow[n, list(n.electrical_output.keys())[0], t]

	P

	Electr. power output of expansion

	\(fuel_input\)

	flow[list(n.fuel_input.keys())[0], n, t]

	P

	Heat input
(external) into Expansion

	
CONSTRAINT_GROUP = True

	

experimental.Link

In-development component to add some intelligence
to connection between two Nodes.

	
class oemof.solph.components.experimental._link.Link(*args, **kwargs)

	Bases: oemof.network.network.Transformer

A Link object with 1…2 inputs and 1…2 outputs.

	Parameters

	
	conversion_factors (dict) – Dictionary containing conversion factors for conversion of each flow.
Keys are the connected tuples (input, output) bus objects.
The dictionary values can either be a scalar or an iterable with length
of time horizon for simulation.

	Note (This component is experimental. Use it with care.)

Notes

	The sets, variables, constraints and objective parts are created

	
	LinkBlock

Examples

>>> from oemof import solph
>>> bel0 = solph.buses.Bus(label="el0")
>>> bel1 = solph.buses.Bus(label="el1")

>>> link = solph.components.experimental.Link(
... label="transshipment_link",
... inputs={bel0: solph.flows.Flow(nominal_value=4),
... bel1: solph.flows.Flow(nominal_value=2)},
... outputs={bel0: solph.flows.Flow(),
... bel1: solph.flows.Flow()},
... conversion_factors={(bel0, bel1): 0.8, (bel1, bel0): 0.9})
>>> print(sorted([x[1][5] for x in link.conversion_factors.items()]))
[0.8, 0.9]

>>> type(link)
<class 'oemof.solph.components.experimental._link.Link'>

>>> sorted([str(i) for i in link.inputs])
['el0', 'el1']

>>> link.conversion_factors[(bel0, bel1)][3]
0.8

	
constraint_group()

	

	
class oemof.solph.components.experimental._link.LinkBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for the relation of nodes with type
Link

Note: This component is experimental. Use it with care.

The following constraints are created:

\[\begin{split}&
(1) \qquad P_{\mathrm{in},n}(t) = c_n(t) \times P_{\mathrm{out},n}(t)
 \quad \forall t \in T, \forall n in {1,2} \\
&\end{split}\]

	
CONSTRAINT_GROUP = True

	

experimental.PiecewiseLinearTransformer

In-development transfomer with piecewise linar efficiencies.

	
class oemof.solph.components.experimental._piecewise_linear_transformer.PiecewiseLinearTransformer(*args, **kwargs)

	Bases: oemof.network.network.Transformer

Component to model a transformer with one input and one output
and an arbitrary piecewise linear conversion function.

	Parameters

	
	in_breakpoints (list) – List containing the domain breakpoints, i.e. the breakpoints for the
incoming flow.

	conversion_function (func) – The function describing the relation between incoming flow and outgoing
flow which is to be approximated.

	pw_repn (string) – Choice of piecewise representation that is passed to
pyomo.environ.Piecewise

Examples

>>> import oemof.solph as solph

>>> b_gas = solph.buses.Bus(label='biogas')
>>> b_el = solph.buses.Bus(label='electricity')

>>> pwltf = solph.components.experimental.PiecewiseLinearTransformer(
... label='pwltf',
... inputs={b_gas: solph.flows.Flow(
... nominal_value=100,
... variable_costs=1)},
... outputs={b_el: solph.flows.Flow()},
... in_breakpoints=[0,25,50,75,100],
... conversion_function=lambda x: x**2,
... pw_repn='CC')

>>> type(pwltf)
<class 'oemof.solph.components.experimental._piecewise_linear_transformer.PiecewiseLinearTransformer'>

	
constraint_group()

	

	
class oemof.solph.components.experimental._piecewise_linear_transformer.PiecewiseLinearTransformerBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for the relation of nodes with type
PiecewiseLinearTransformer

The following constraints are created:

	
CONSTRAINT_GROUP = True

	

experimental.SinkDSM

Implementation of demand-side management (demand response) which allows for

	modeling load shifting and/or shedding of a given baseline demand
for a demand response portfolio,

	assessing both, a pure dispatch and an investment model and

	choosing among different (storage-alike) implementations.

	
class oemof.solph.components.experimental._sink_dsm.SinkDSM(demand, capacity_up, capacity_down, approach, label=None, inputs=None, shift_interval=None, delay_time=None, shift_time=None, shed_time=None, max_demand=None, max_capacity_down=None, max_capacity_up=None, flex_share_down=None, flex_share_up=None, cost_dsm_up=0, cost_dsm_down_shift=0, cost_dsm_down_shed=0, efficiency=1, recovery_time_shift=None, recovery_time_shed=None, ActivateYearLimit=False, ActivateDayLimit=False, n_yearLimit_shift=None, n_yearLimit_shed=None, t_dayLimit=None, addition=True, fixes=True, shed_eligibility=True, shift_eligibility=True, investment=None, custom_attributes=None)

	Bases: oemof.solph.components._sink.Sink

Demand Side Management implemented as a Sink with flexibility potential
to deviate from the baseline demand in upwards or downwards direction.

There are several approaches possible which can be selected:

	DIW: Based on the paper by Zerrahn, Alexander and Schill, Wolf-Peter
(2015): On the representation of demand-side management in power system
models, in: Energy (84), pp. 840-845,
10.1016/j.energy.2015.03.037 [https://doi.org/10.1016/j.energy.2015.03.037],
accessed 08.01.2021, pp. 842-843.

	DLR: Based on the PhD thesis of Gils, Hans Christian (2015):
Balancing of Intermittent Renewable Power Generation by Demand Response
and Thermal Energy Storage, Stuttgart,
http://dx.doi.org/10.18419/opus-6888,
accessed 08.01.2021, pp. 67-70.

	oemof: Created by Julian Endres. A fairly simple DSM representation which
demands the energy balance to be levelled out in fixed cycles

An evaluation of different modeling approaches has been carried out and
presented at the INREC 2020. Some of the results are as follows:

	DIW: A solid implementation with the tendency of slight overestimization
of potentials since a shift_time is not included. It may get
computationally expensive due to a high time-interlinkage in constraint
formulations.

	DLR: An extensive modeling approach for demand response which neither
leads to an over- nor underestimization of potentials and balances
modeling detail and computation intensity. fixes and
addition should both be set to True which is the default value.

	oemof: A very computationally efficient approach which only requires the
energy balance to be levelled out in certain intervals. If demand
response is not at the center of the research and/or parameter
availability is limited, this approach should be chosen.
Note that approach oemof does allow for load shedding,
but does not impose a limit on maximum amount of shedded energy.

SinkDSM adds additional constraints that allow to shift energy in certain
time window constrained by capacity_up and capacity_down.

	Parameters

	
	demand (numeric) – original electrical demand (normalized)
For investment modeling, it is advised to use the maximum of the
demand timeseries and the cumulated (fixed) infeed time series
for normalization, because the balancing potential may be determined by
both. Elsewhise, underinvestments may occur.

	capacity_up (int or array) – maximum DSM capacity that may be increased (normalized)

	capacity_down (int or array) – maximum DSM capacity that may be reduced (normalized)

	approach (str, one of ‘oemof’, ‘DIW’, ‘DLR’) – Choose one of the DSM modeling approaches. Read notes about which
parameters to be applied for which approach.

oemof :

Simple model in which the load shift must be compensated in a
predefined fixed interval (shift_interval is mandatory).
Within time windows of the length shift_interval DSM
up and down shifts are balanced. For details see
SinkDSMOemofBlock resp.
SinkDSMOemofInvestmentBlock.

DIW :

Sophisticated model based on the formulation by
Zerrahn & Schill (2015a). The load shift of the component must be
compensated in a predefined delay time (delay_time is
mandatory).
For details see
SinkDSMDIWBlock resp.
SinkDSMDIWInvestmentBlock.

DLR :

Sophisticated model based on the formulation by
Gils (2015). The load shift of the component must be
compensated in a predefined delay time (delay_time is
mandatory).
For details see
SinkDSMDLRBlock resp.
SinkDSMDLRInvestmentBlock.

	shift_interval (int) – Only used when approach is set to “oemof”. Otherwise, can be
None.
It’s the interval in which between \(DSM_{t}^{up}\) and
\(DSM_{t}^{down}\) have to be compensated.

	delay_time (int) – Only used when approach is set to “DIW” or “DLR”. Otherwise,
can be None.
Length of symmetrical time windows around \(t\) in which
\(DSM_{t}^{up}\) and \(DSM_{t,tt}^{down}\) have to be
compensated.
Note: For approach ‘DLR’, an iterable is constructed in order
to model flexible delay times

	shift_time (int) – Only used when approach is set to “DLR”.
Duration of a single upwards or downwards shift (half a shifting cycle
if there is immediate compensation)

	shed_time (int) – Only used when shed_eligibility is set to True.
Maximum length of a load shedding process at full capacity
(used within energy limit constraint)

	max_demand (numeric) – Maximum demand prior to demand response

	max_capacity_down (numeric) – Maximum capacity eligible for downshifts
prior to demand response (used for dispatch mode)

	max_capacity_up (numeric) – Maximum capacity eligible for upshifts
prior to demand response (used for dispatch mode)

	flex_share_down (float) – Flexible share of installed capacity
eligible for downshifts (used for invest mode)

	flex_share_up (float) – Flexible share of installed capacity
eligible for upshifts (used for invest mode)

	cost_dsm_up (int) – Cost per unit of DSM activity that increases the demand

	cost_dsm_down_shift (int) – Cost per unit of DSM activity that decreases the demand
for load shifting

	cost_dsm_down_shed (int) – Cost per unit of DSM activity that decreases the demand
for load shedding

	efficiency (float) – Efficiency factor for load shifts (between 0 and 1)

	recovery_time_shift (int) – Only used when approach is set to “DIW”.
Minimum time between the end of one load shifting process
and the start of another for load shifting processes

	recovery_time_shed (int) – Minimum time between the end of one load shifting process
and the start of another for load shedding processes

	ActivateYearLimit (boolean) – Only used when approach is set to “DLR”.
Control parameter; activates constraints for year limit if set to True

	ActivateDayLimit (boolean) – Only used when approach is set to “DLR”.
Control parameter; activates constraints for day limit if set to True

	n_yearLimit_shift (int) – Only used when approach is set to “DLR”.
Maximum number of load shifts at full capacity per year, used to limit
the amount of energy shifted per year. Optional parameter that is only
needed when ActivateYearLimit is True

	n_yearLimit_shed (int) – Only used when approach is set to “DLR”.
Maximum number of load sheds at full capacity per year, used to limit
the amount of energy shedded per year. Mandatory parameter if load
shedding is allowed by setting shed_eligibility to True

	t_dayLimit (int) – Only used when approach is set to “DLR”.
Maximum duration of load shifts at full capacity per day, used to limit
the amount of energy shifted per day. Optional parameter that is only
needed when ActivateDayLimit is True

	addition (boolean) – Only used when approach is set to “DLR”.
Boolean parameter indicating whether or not to include additional
constraint (which corresponds to Eq. 10
from Zerrahn and Schill (2015a))

	fixes (boolean) – Only used when approach is set to “DLR”.
Boolean parameter indicating whether or not to include additional
fixes. These comprise prohibiting shifts which cannot be balanced
within the optimization timeframe

	shed_eligibility (boolean) – Boolean parameter indicating whether unit is eligible for
load shedding

	shift_eligibility (boolean) – Boolean parameter indicating whether unit is eligible for
load shifting

Note

	When you set up a dispatch model, you have to specify max_capacity_up,
max_capacity_down and max_demand. Don’t set flex_share_up
and flex_share_down which shall only used for investment modeling.

	When using the investment mode, you have to specify flex_share_up
and flex_share_down instead of max_capacity_up,
max_capacity_down and max_demand.

	method has been renamed to approach.

	As many constraints and dependencies are created in approach “DIW”,
computational cost might be high with a large delay_time and with model
of high temporal resolution.

	The approach “DLR” preforms better in terms of calculation time,
compared to the approach “DIW”.

	Using approach “DIW” or “DLR” might result in demand shifts that
exceed the specified delay time by activating up and down simultaneously
in the time steps between to DSM events. Thus, the purpose of this
component is to model demand response portfolios rather than individual
demand units.

	It’s not recommended to assign cost to the flow that connects
SinkDSM with a bus. Instead, use cost_dsm_up
or cost_dsm_down_shift.

	Variable costs may be attributed to upshifts, downshifts or both.
Costs for shedding may deviate from that for shifting
(usually costs for shedding are much larger and equal to the value
of lost load).

	
constraint_group()

	

	
class oemof.solph.components.experimental._sink_dsm.SinkDSMDIWBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Constraints for SinkDSM with “DIW” approach

The following constraints are created for approach = “DIW”:

\[\begin{split}&
(1) \quad DSM_{t}^{up} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shift} = \textrm{False} \\
& \\
&
(2) \quad DSM_{t}^{do, shed} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shed} = \textrm{False} \\
& \\
&
(3) \quad \dot{E}_{t} = demand_{t} \cdot demand_{max} + DSM_{t}^{up} -
\sum_{tt=t-L}^{t+L} DSM_{tt,t}^{do, shift} - DSM_{t}^{do, shed} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(4) \quad DSM_{t}^{up} \cdot \eta =
\sum_{tt=t-L}^{t+L} DSM_{t,tt}^{do, shift} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(5) \quad DSM_{t}^{up} \leq E_{t}^{up} \cdot E_{up, max} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(6) \quad \sum_{t=tt-L}^{tt+L} DSM_{t,tt}^{do, shift}
+ DSM_{tt}^{do, shed} \leq E_{tt}^{do} \cdot E_{do, max} \\
& \quad \quad \quad \quad \forall tt \in \mathbb{T} \\
& \\
&
(7) \quad DSM_{tt}^{up} + \sum_{t=tt-L}^{tt+L} DSM_{t,tt}^{do, shift}
+ DSM_{tt}^{do, shed} \leq
max \{ E_{tt}^{up} \cdot E_{up, max},
E_{tt}^{do} \cdot E_{do, max} \} \\
& \quad \quad \quad \quad \forall tt \in \mathbb{T} \\
& \\
&
(8) \quad \sum_{tt=t}^{t+R_{shi}-1} DSM_{tt}^{up}
\leq E_{t}^{up} \cdot E_{up, max} \cdot L \cdot \Delta t \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(9) \quad \sum_{tt=t}^{t+R_{she}-1} DSM_{tt}^{do, shed}
\leq E_{t}^{do} \cdot E_{do, max} \cdot t_{shed} \cdot \Delta t \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\\end{split}\]

Note

For the sake of readability, the handling of indices is not
displayed here. E.g. evaluating a variable for t-L may lead to a negative
and therefore infeasible index.
This is addressed by limiting the sums to non-negative indices within the
model index bounds. Please refer to the constraints implementation
themselves.

The following parts of the objective function are created:

\[\begin{split}&
(DSM_{t}^{up} \cdot cost_{t}^{dsm, up}
+ \sum_{tt=0}^{T} DSM_{t, tt}^{do, shift} \cdot
cost_{t}^{dsm, do, shift}
+ DSM_{t}^{do, shed} \cdot cost_{t}^{dsm, do, shed})
\cdot \omega_{t} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\\end{split}\]

Table: Symbols and attribute names of variables and parameters

Variables (V) and Parameters (P)

	symbol

	attribute

	type

	explanation

	\(DSM_{t}^{up}\)

	dsm_up[g, t]

	V

	DSM up shift (additional load) in hour t

	\(DSM_{t, tt}^{do, shift}\)

	dsm_do_shift[g, t, tt]

	V

	
DSM down shift (less load) in hour tt

to compensate for upwards shifts in hour t

	\(DSM_{t}^{do, shed}\)

	dsm_do_shed[g, t]

	V

	DSM shedded (capacity shedded, i.e. not compensated for)

	\(\dot{E}_{t}\)

	SinkDSM.inputs

	V

	Energy flowing in from (electrical) inflow bus

	\(L\)

	delay_time

	P

	
Maximum delay time for load shift

(time until the energy balance has to be levelled out again;

roundtrip time of one load shifting cycle, i.e. time window

for upshift and compensating downshift)

	\(t_{she}\)

	shed_time

	P

	Maximum time for one load shedding process

	\(demand_{t}\)

	demand[t]

	P

	(Electrical) demand series (normalized)

	\(demand_{max}\)

	max_demand

	P

	Maximum demand value

	\(E_{t}^{do}\)

	capacity_down[t]

	P

	
Capacity allowed for a load adjustment downwards

(normalized; shifting + shedding)

	\(E_{t}^{up}\)

	capacity_up[t]

	P

	Capacity allowed for a shift upwards (normalized)

	\(E_{do, max}\)

	max_capacity_down

	P

	
Maximum capacity allowed for a load adjustment downwards

(shifting + shedding)

	\(E_{up, max}\)

	max_capacity_up

	P

	Maximum capacity allowed for a shift upwards

	\(\eta\)

	efficiency

	P

	Efficiency for load shifting processes

	\(\mathbb{T}\)

	
	P

	Time steps of the model

	\(e_{shift}\)

	shift_eligibility

	P

	
Boolean parameter indicating if unit can be used

for load shifting

	\(e_{shed}\)

	shed_eligibility

	P

	
Boolean parameter indicating if unit can be used

for load shedding

	\(cost_{t}^{dsm, up}\)

	cost_dsm_up[t]

	P

	Variable costs for an upwards shift

	\(cost_{t}^{dsm, do, shift}\)

	cost_dsm_down_shift[t]

	P

	Variable costs for a downwards shift (load shifting)

	\(cost_{t}^{dsm, do, shed}\)

	cost_dsm_down_shift[t]

	P

	Variable costs for shedding load

	\(\omega_{t}\)

	
	P

	Objective weighting of the model for timestep t

	\(R_{shi}\)

	recovery_time_shift

	P

	
Minimum time between the end of one load shifting process

and the start of another

	\(R_{she}\)

	recovery_time_shed

	P

	
Minimum time between the end of one load shedding process

and the start of another

	\(\Delta t\)

	
	P

	The time increment of the model

	\(\omega_{t}\)

	
	P

	Objective weighting of the model for timestep t

	
CONSTRAINT_GROUP = True

	

	
class oemof.solph.components.experimental._sink_dsm.SinkDSMDIWInvestmentBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Constraints for SinkDSM with “DIW” approach and investment defined

The following constraints are created for approach = “DIW” with an
investment object defined:

\[\begin{split}&
(1) \quad invest_{min} \leq invest \leq invest_{max} \\
& \\
&
(2) \quad DSM_{t}^{up} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shift} = \textrm{False} \\
& \\
&
(3) \quad DSM_{t}^{do, shed} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shed} = \textrm{False} \\
& \\
&
(4) \quad \dot{E}_{t} = demand_{t} \cdot (invest + E_{exist})
+ DSM_{t}^{up} -
\sum_{tt=t-L}^{t+L} DSM_{tt,t}^{do, shift} - DSM_{t}^{do, shed} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(5) \quad DSM_{t}^{up} \cdot \eta =
\sum_{tt=t-L}^{t+L} DSM_{t,tt}^{do, shift} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(6) \quad DSM_{t}^{up} \leq E_{t}^{up} \cdot (invest + E_{exist})
\ s_{flex, up} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(7) \quad \sum_{t=tt-L}^{tt+L} DSM_{t,tt}^{do, shift}
+ DSM_{tt}^{do, shed} \leq E_{tt}^{do} \cdot (invest + E_{exist})
\cdot s_{flex, do} \\
& \quad \quad \quad \quad \forall tt \in \mathbb{T} \\
& \\
&
(8) \quad DSM_{tt}^{up} + \sum_{t=tt-L}^{tt+L} DSM_{t,tt}^{do, shift}
+ DSM_{tt}^{do, shed} \\
& \quad \quad \leq max \{ E_{tt}^{up} \cdot s_{flex, up},
E_{tt}^{do} \cdot s_{flex, do} \} \cdot (invest + E_{exist}) \\
& \quad \quad \quad \quad \forall tt \in \mathbb{T} \\
& \\
&
(9) \quad \sum_{tt=t}^{t+R-1} DSM_{tt}^{up}
\leq E_{t}^{up} \cdot (invest + E_{exist})
\cdot s_{flex, up} \cdot L \cdot \Delta t \\
& \quad \quad \quad \quad \forall tt \in \mathbb{T} \\
& \\
&
(10) \quad \sum_{tt=t}^{t+R-1} DSM_{tt}^{do, shed}
\leq E_{t}^{do} \cdot (invest + E_{exist})
\cdot s_{flex, do} \cdot t_{shed}
\cdot \Delta t \\
& \quad \quad \quad \quad \forall tt \in \mathbb{T} \\\end{split}\]

Note

For the sake of readability, the handling of indices is not
displayed here. E.g. evaluating a variable for t-L may lead to a negative
and therefore infeasible index.
This is addressed by limiting the sums to non-negative indices within the
model index bounds. Please refer to the constraints implementation
themselves.

The following parts of the objective function are created:

	Investment annuity:

\[\begin{split}&
invest \cdot costs_{invest} \\\end{split}\]

	Variable costs:

\[\begin{split}&
(DSM_{t}^{up} \cdot cost_{t}^{dsm, up}
+ \sum_{tt=0}^{T} DSM_{t, tt}^{do, shift} \cdot
cost_{t}^{dsm, do, shift}
+ DSM_{t}^{do, shed} \cdot cost_{t}^{dsm, do, shed})
\cdot \omega_{t} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\\end{split}\]

Table: Symbols and attribute names of variables and parameters

	Please refer to
oemof.solph.components.experimental._sink_dsm.SinkDSMDIWBlock
for a variables and parameter description.

	The following variables and parameters are exclusively used for
investment modeling:

Variables (V) and Parameters (P)

	symbol

	attribute

	type

	explanation

	\(invest\)

	invest

	V

	
DSM capacity invested in

Equals to the additionally installed capacity.

The capacity share eligible for a shift is determined by flex share(s).

	\(invest_{min}\)

	investment.minimum

	P

	minimum investment

	\(invest_{max}\)

	investment.maximum

	P

	maximum investment

	\(E_{exist}\)

	investment.existing

	P

	existing DSM capacity

	\(s_{flex, up}\)

	flex_share_up

	P

	share of invested capacity that may be shift upwards at maximum

	\(s_{flex, do}\)

	flex_share_do

	P

	share of invested capacity that may be shift downwards at maximum

	\(costs_{invest}\)

	investment.ep_costs

	P

	specific investment annuity

	
CONSTRAINT_GROUP = True

	

	
class oemof.solph.components.experimental._sink_dsm.SinkDSMDLRBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Constraints for SinkDSM with “DLR” approach

The following constraints are created for approach = “DLR”:

\[\begin{split}&
(1) \quad DSM_{h, t}^{up} = 0 \\
& \quad \quad \quad \quad \forall h \in H_{DR}, t \in \mathbb{T}
\quad \textrm{if} \quad e_{shift} = \textrm{False} \\
& \\
&
(2) \quad DSM_{t}^{do, shed} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shed} = \textrm{False} \\
& \\
&
(3) \quad \dot{E}_{t} = demand_{t} \cdot demand_{max} \\
& \quad \quad \quad \quad + \displaystyle\sum_{h=1}^{H_{DR}}
(DSM_{h, t}^{up}
+ DSM_{h, t}^{balanceDo} - DSM_{h, t}^{do, shift}
- DSM_{h, t}^{balanceUp}) - DSM_{t}^{do, shed} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(4) \quad DSM_{h, t}^{balanceDo} =
\frac{DSM_{h, t - h}^{do, shift}}{\eta} \\
& \quad \quad \quad \quad \forall h \in H_{DR}, t \in [h..T] \\
& \\
&
(5) \quad DSM_{h, t}^{balanceUp} =
DSM_{h, t-h}^{up} \cdot \eta \\
& \quad \quad \quad \quad \forall h \in H_{DR}, t \in [h..T] \\
& \\
&
(6) \quad DSM_{h, t}^{do, shift} = 0
\quad \forall h \in H_{DR} \\
& \quad \quad \quad \quad \forall t \in [T - h..T] \\
& \\
&
(7) \quad DSM_{h, t}^{up} = 0
\quad \forall h \in H_{DR} \\
& \quad \quad \quad \quad \forall t \in [T - h..T] \\
& \\
&
(8) \quad \displaystyle\sum_{h=1}^{H_{DR}} (DSM_{h, t}^{do, shift}
+ DSM_{h, t}^{balanceUp}) + DSM_{t}^{do, shed}
\leq E_{t}^{do} \cdot E_{max, do} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(9) \quad \displaystyle\sum_{h=1}^{H_{DR}} (DSM_{h, t}^{up}
+ DSM_{h, t}^{balanceDo})
\leq E_{t}^{up} \cdot E_{max, up} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(10) \quad \Delta t \cdot \displaystyle\sum_{h=1}^{H_{DR}}
(DSM_{h, t}^{do, shift} - DSM_{h, t}^{balanceDo} \cdot \eta)
= W_{t}^{levelDo} - W_{t-1}^{levelDo} \\
& \quad \quad \quad \quad \forall t \in [1..T] \\
& \\
&
(11) \quad \Delta t \cdot \displaystyle\sum_{h=1}^{H_{DR}}
(DSM_{h, t}^{up} \cdot \eta - DSM_{h, t}^{balanceUp})
= W_{t}^{levelUp} - W_{t-1}^{levelUp} \\
& \quad \quad \quad \quad \forall t \in [1..T] \\
& \\
&
(12) \quad W_{t}^{levelDo} \leq \overline{E}_{t}^{do}
\cdot E_{max, do} \cdot t_{shift} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(13) \quad W_{t}^{levelUp} \leq \overline{E}_{t}^{up}
\cdot E_{max, up} \cdot t_{shift} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(14) \quad \displaystyle\sum_{t=0}^{T} DSM_{t}^{do, shed}
\leq E_{max, do} \cdot \overline{E}_{t}^{do} \cdot t_{shed}
\cdot n^{yearLimitShed} \\
& \\
&
(15) \quad \displaystyle\sum_{t=0}^{T} \sum_{h=1}^{H_{DR}}
DSM_{h, t}^{do, shift}
\leq E_{max, do} \cdot \overline{E}_{t}^{do} \cdot t_{shift}
\cdot n^{yearLimitShift} \\
& \quad \quad \textrm{(optional constraint)} \\
& \\
&
(16) \quad \displaystyle\sum_{t=0}^{T} \sum_{h=1}^{H_{DR}}
DSM_{h, t}^{up}
\leq E_{max, up} \cdot \overline{E}_{t}^{up} \cdot t_{shift}
\cdot n^{yearLimitShift} \\
& \quad \quad \textrm{(optional constraint)} \\
& \\
&
(17) \quad \displaystyle\sum_{h=1}^{H_{DR}} DSM_{h, t}^{do, shift}
\leq E_{max, do} \cdot \overline{E}_{t}^{do}
\cdot t_{shift} -
\displaystyle\sum_{t'=1}^{t_{dayLimit}} \sum_{h=1}^{H_{DR}}
DSM_{h, t - t'}^{do, shift} \\
& \quad \quad \quad \quad \forall t \in [t-t_{dayLimit}..T] \\
& \quad \quad \textrm{(optional constraint)} \\
& \\
&
(18) \quad \displaystyle\sum_{h=1}^{H_{DR}} DSM_{h, t}^{up}
\leq E_{max, up} \cdot \overline{E}_{t}^{up}
\cdot t_{shift} -
\displaystyle\sum_{t'=1}^{t_{dayLimit}} \sum_{h=1}^{H_{DR}}
DSM_{h, t - t'}^{up} \\
& \quad \quad \quad \quad \forall t \in [t-t_{dayLimit}..T] \\
& \quad \quad \textrm{(optional constraint)} \\
& \\
&
(19) \quad \displaystyle\sum_{h=1}^{H_{DR}} (DSM_{h, t}^{up}
+ DSM_{h, t}^{balanceDo}
+ DSM_{h, t}^{do, shift} + DSM_{h, t}^{balanceUp})
+ DSM_{t}^{do, shed} \\
& \quad \quad \leq \max \{E_{t}^{up} \cdot E_{max, up},
E_{t}^{do} \cdot E_{max, do} \} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \quad \quad \textrm{(optional constraint)} \\\end{split}\]

Note

For the sake of readability, the handling of indices is not
displayed here. E.g. evaluating a variable for t-L may lead to a negative
and therefore infeasible index.
This is addressed by limiting the sums to non-negative indices within the
model index bounds. Please refer to the constraints implementation
themselves.

The following parts of the objective function are created:

\[\begin{split}&
(\sum_{h=1}^{H_{DR}} (DSM_{h, t}^{up} + DSM_{h, t}^{balanceDo})
\cdot cost_{t}^{dsm, up} \\
& + \sum_{h=1}^{H_{DR}} (DSM_{h, t}^{do, shift}
+ DSM_{h, t}^{balanceUp})
\cdot cost_{t}^{dsm, do, shift} \\
& + DSM_{t}^{do, shed} \cdot cost_{t}^{dsm, do, shed})
\cdot \omega_{t} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\\end{split}\]

Table: Symbols and attribute names of variables and parameters

Variables (V), Parameters (P) and additional Sets (S)

	symbol

	attribute

	type

	explanation

	\(DSM_{h, t}^{up}\)

	dsm_up[g,h,t]

	V

	DSM up shift (additional load) in hour t with delay time h

	\(DSM_{h, t}^{do, shift}\)

	dsm_do_shift[g, h, t]

	V

	DSM down shift (less load) in hour t with delay time h

	\(DSM_{h, t}^{balanceUp}\)

	balance_dsm_up[g, h, t]

	V

	
DSM down shift (less load) in hour t with delay time h

to balance previous upshift

	\(DSM_{h, t}^{balanceDo}\)

	balance_dsm_do[g, h, t]

	V

	
DSM up shift (additional load) in hour t with delay time h

to balance previous downshift

	\(DSM_{t}^{do, shed}\)

	dsm_do_shed[g, t]

	V

	DSM shedded (capacity shedded, i.e. not compensated for)

	\(\dot{E}_{t}\)

	SinkDSM.inputs

	V

	Energy flowing in from (electrical) inflow bus

	\(h\)

	delay_time

	P

	
Maximum delay time for load shift

(integer value from set of feasible delay times per DSM portfolio;

time until the energy balance has to be levelled out again;

roundtrip time of one load shifting cycle, i.e. time window

for upshift and compensating downshift)

	\(H_{DR}\)

	range(len(delay_time))

	S

	
Set of feasible delay times for load shift

of a certain DSM portfolio

	\(t_{shift}\)

	shift_time

	P

	
Maximum time for a shift in one direction,

i. e. maximum time for an upshift or a downshift

in a load shifting cycle

	\(t_{she}\)

	shed_time

	P

	Maximum time for one load shedding process

	\(demand_{t}\)

	demand[t]

	P

	(Electrical) demand series (normalized)

	\(demand_{max}\)

	max_demand

	P

	Maximum demand value

	\(E_{t}^{do}\)

	capacity_down[t]

	P

	
Capacity allowed for a load adjustment downwards

(normalized; shifting + shedding)

	\(E_{t}^{up}\)

	capacity_up[t]

	P

	Capacity allowed for a shift upwards (normalized)

	\(E_{do, max}\)

	max_capacity_down

	P

	
Maximum capacity allowed for a load adjustment downwards

(shifting + shedding)

	\(E_{up, max}\)

	max_capacity_up

	P

	Maximum capacity allowed for a shift upwards

	\(\eta\)

	efficiency

	P

	Efficiency for load shifting processes

	\(\mathbb{T}\)

	
	P

	Time steps of the model

	\(e_{shift}\)

	shift_eligibility

	P

	
Boolean parameter indicating if unit can be used

for load shifting

	\(e_{shed}\)

	shed_eligibility

	P

	
Boolean parameter indicating if unit can be used

for load shedding

	\(cost_{t}^{dsm, up}\)

	cost_dsm_up[t]

	P

	Variable costs for an upwards shift

	\(cost_{t}^{dsm, do, shift}\)

	cost_dsm_down_shift[t]

	P

	Variable costs for a downwards shift (load shifting)

	\(cost_{t}^{dsm, do, shed}\)

	cost_dsm_down_shift[t]

	P

	Variable costs for shedding load

	\(\omega_{t}\)

	
	P

	Objective weighting of the model for timestep t

	\(R_{shi}\)

	recovery_time_shift

	P

	
Minimum time between the end of one load shifting process

and the start of another

	\(R_{she}\)

	recovery_time_shed

	P

	
Minimum time between the end of one load shedding process

and the start of another

	\(\Delta t\)

	
	P

	The time increment of the model

	\(\omega_{t}\)

	
	P

	Objective weighting of the model for timestep t

	\(n_{yearLimitShift}\)

	n_yeaLimitShift

	P

	
Maximum allowed number of load shifts (at full capacity)

in the optimization timeframe

	\(n_{yearLimitShed}\)

	n_yeaLimitShed

	P

	
Maximum allowed number of load sheds (at full capacity)

in the optimization timeframe

	\(t_{dayLimit}\)

	t_dayLimit

	P

	
Maximum duration of load shifts at full capacity per day

resp. in the last hours before the current”

	
CONSTRAINT_GROUP = True

	

	
class oemof.solph.components.experimental._sink_dsm.SinkDSMDLRInvestmentBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Constraints for SinkDSM with “DLR” approach and investment defined

The following constraints are created for approach = “DLR” with an
investment object defined:

\[\begin{split}&
(1) \quad invest_{min} \leq invest \leq invest_{max} \\
& \\
&
(2) \quad DSM_{h, t}^{up} = 0 \\
& \quad \quad \quad \quad \forall h \in H_{DR}, t \in \mathbb{T}
\quad \textrm{if} \quad e_{shift} = \textrm{False} \\
&
(3) \quad DSM_{t}^{do, shed} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shed} = \textrm{False} \\
& \\
&
(4) \quad \dot{E}_{t} = demand_{t} \cdot (invest + E_{exist}) \\
& \quad \quad \quad \quad + \displaystyle\sum_{h=1}^{H_{DR}}
(DSM_{h, t}^{up}
+ DSM_{h, t}^{balanceDo} - DSM_{h, t}^{do, shift}
- DSM_{h, t}^{balanceUp}) - DSM_{t}^{do, shed} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(5) \quad DSM_{h, t}^{balanceDo} =
\frac{DSM_{h, t - h}^{do, shift}}{\eta} \\
& \quad \quad \quad \quad \forall h \in H_{DR}, t \in [h..T] \\
& \\
&
(6) \quad DSM_{h, t}^{balanceUp} =
DSM_{h, t-h}^{up} \cdot \eta \\
& \quad \quad \quad \quad \forall h \in H_{DR}, t \in [h..T] \\
& \\
&
(7) \quad DSM_{h, t}^{do, shift} = 0
\quad \forall h \in H_{DR} \\
& \quad \quad \quad \quad \forall t \in [T - h..T] \\
& \\
&
(8) \quad DSM_{h, t}^{up} = 0 \\
& \quad \quad \quad \quad \forall h \in H_{DR}, t \in [T - h..T] \\
& \\
&
(9) \quad \displaystyle\sum_{h=1}^{H_{DR}} (DSM_{h, t}^{do, shift}
+ DSM_{h, t}^{balanceUp}) + DSM_{t}^{do, shed}
\leq E_{t}^{do} \cdot (invest + E_{exist})
\cdot s_{flex, do} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(10) \quad \displaystyle\sum_{h=1}^{H_{DR}} (DSM_{h, t}^{up}
+ DSM_{h, t}^{balanceDo})
\leq E_{t}^{up} \cdot (invest + E_{exist})
\cdot s_{flex, up} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(11) \quad \Delta t \cdot \displaystyle\sum_{h=1}^{H_{DR}}
(DSM_{h, t}^{do, shift} - DSM_{h, t}^{balanceDo} \cdot \eta)
= W_{t}^{levelDo} - W_{t-1}^{levelDo} \\
& \quad \quad \quad \quad \forall t \in [1..T] \\
& \\
&
(12) \quad \Delta t \cdot \displaystyle\sum_{h=1}^{H_{DR}}
(DSM_{h, t}^{up} \cdot \eta - DSM_{h, t}^{balanceUp})
= W_{t}^{levelUp} - W_{t-1}^{levelUp} \\
& \quad \quad \quad \quad \forall t \in [1..T] \\
& \\
&
(13) \quad W_{t}^{levelDo} \leq \overline{E}_{t}^{do}
\cdot (invest + E_{exist})
\cdot s_{flex, do} \cdot t_{shift} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(14) \quad W_{t}^{levelUp} \leq \overline{E}_{t}^{up}
\cdot (invest + E_{exist})
\cdot s_{flex, up} \cdot t_{shift} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(15) \quad \displaystyle\sum_{t=0}^{T} DSM_{t}^{do, shed}
\leq (invest + E_{exist})
\cdot s_{flex, do} \cdot \overline{E}_{t}^{do}
\cdot t_{shed}
\cdot n^{yearLimitShed} \\
& \\
&
(16) \quad \displaystyle\sum_{t=0}^{T} \sum_{h=1}^{H_{DR}}
DSM_{h, t}^{do, shift}
\leq (invest + E_{exist})
\cdot s_{flex, do} \cdot \overline{E}_{t}^{do}
\cdot t_{shift}
\cdot n^{yearLimitShift} \\
& \quad \quad \textrm{(optional constraint)} \\
& \\
&
(17) \quad \displaystyle\sum_{t=0}^{T} \sum_{h=1}^{H_{DR}}
DSM_{h, t}^{up}
\leq (invest + E_{exist})
\cdot s_{flex, up} \cdot \overline{E}_{t}^{up}
\cdot t_{shift}
\cdot n^{yearLimitShift} \\
& \quad \quad \textrm{(optional constraint)} \\
&
(18) \quad \displaystyle\sum_{h=1}^{H_{DR}} DSM_{h, t}^{do, shift}
\leq (invest + E_{exist})
\cdot s_{flex, do} \cdot \overline{E}_{t}^{do}
\cdot t_{shift} -
\displaystyle\sum_{t'=1}^{t_{dayLimit}} \sum_{h=1}^{H_{DR}}
DSM_{h, t - t'}^{do, shift} \\
& \quad \quad \quad \quad \forall t \in [t-t_{dayLimit}..T] \\
& \quad \quad \textrm{(optional constraint)} \\
& \\
&
(19) \quad \displaystyle\sum_{h=1}^{H_{DR}} DSM_{h, t}^{up}
\leq (invest + E_{exist})
\cdot s_{flex, up} \cdot \overline{E}_{t}^{up}
\cdot t_{shift} -
\displaystyle\sum_{t'=1}^{t_{dayLimit}} \sum_{h=1}^{H_{DR}}
DSM_{h, t - t'}^{up} \\
& \quad \quad \quad \quad \forall t \in [t-t_{dayLimit}..T] \\
& \quad \quad \textrm{(optional constraint)} \\
& \\
&
(20) \quad \displaystyle\sum_{h=1}^{H_{DR}} (DSM_{h, t}^{up}
+ DSM_{h, t}^{balanceDo}
+ DSM_{h, t}^{do, shift} + DSM_{h, t}^{balanceUp})
+ DSM_{t}^{shed} \\
& \quad \quad \leq \max \{E_{t}^{up} \cdot s_{flex, up},
E_{t}^{do} \cdot s_{flex, do} \} \cdot (invest + E_{exist}) \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \quad \quad \textrm{(optional constraint)} \\\end{split}\]

Note

For the sake of readability, the handling of indices is not
displayed here. E.g. evaluating a variable for t-L may lead to a negative
and therefore infeasible index.
This is addressed by limiting the sums to non-negative indices within the
model index bounds. Please refer to the constraints implementation
themselves.

The following parts of the objective function are created:

	Investment annuity:

\[\begin{split}&
invest \cdot costs_{invest} \\\end{split}\]

	Variable costs:

\[\begin{split}&
(\sum_{h=1}^{H_{DR}} (DSM_{h, t}^{up} + DSM_{h, t}^{balanceDo})
\cdot cost_{t}^{dsm, up} \\
& + \sum_{h=1}^{H_{DR}} (DSM_{h, t}^{do, shift}
+ DSM_{h, t}^{balanceUp})
\cdot cost_{t}^{dsm, do, shift} \\
& + DSM_{t}^{do, shed} \cdot cost_{t}^{dsm, do, shed})
\cdot \omega_{t} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\\end{split}\]

Table: Symbols and attribute names of variables and parameters

	Please refer to
oemof.solph.components.experimental._sink_dsm.SinkDSMDLRBlock.

	The following variables and parameters are exclusively used for
investment modeling:

Variables (V) and Parameters (P)

	symbol

	attribute

	type

	explanation

	\(invest\)

	invest

	V

	
DSM capacity invested in

Equals to the additionally installed capacity.

The capacity share eligible for a shift is determined by flex share(s).

	\(invest_{min}\)

	investment.minimum

	P

	minimum investment

	\(invest_{max}\)

	investment.maximum

	P

	maximum investment

	\(E_{exist}\)

	investment.existing

	P

	existing DSM capacity

	\(s_{flex, up}\)

	flex_share_up

	P

	share of invested capacity that may be shift upwards at maximum

	\(s_{flex, do}\)

	flex_share_do

	P

	share of invested capacity that may be shift downwards at maximum

	\(costs_{invest}\)

	investment.ep_costs

	P

	specific investment annuity

	
CONSTRAINT_GROUP = True

	

	
class oemof.solph.components.experimental._sink_dsm.SinkDSMOemofBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Constraints for SinkDSM with “oemof” approach

The following constraints are created for approach = “oemof”:

\[\begin{split}&
(1) \quad DSM_{t}^{up} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shift} = \textrm{False} \\
& \\
&
(2) \quad DSM_{t}^{do, shed} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shed} = \textrm{False} \\
& \\
&
(3) \quad \dot{E}_{t} = demand_{t} \cdot demand_{max} + DSM_{t}^{up}
- DSM_{t}^{do, shift} - DSM_{t}^{do, shed} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(4) \quad DSM_{t}^{up} \leq E_{t}^{up} \cdot E_{up, max} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(5) \quad DSM_{t}^{do, shift} + DSM_{t}^{do, shed}
\leq E_{t}^{do} \cdot E_{do, max} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(6) \quad \sum_{t=t_s}^{t_s+\tau} DSM_{t}^{up} \cdot \eta =
\sum_{t=t_s}^{t_s+\tau} DSM_{t}^{do, shift} \\
& \quad \quad \quad \quad \forall t_s \in \{k \in \mathbb{T}
\mid k \mod \tau = 0\} \\\end{split}\]

The following parts of the objective function are created:

\[\begin{split}&
(DSM_{t}^{up} \cdot cost_{t}^{dsm, up}
+ DSM_{t}^{do, shift} \cdot cost_{t}^{dsm, do, shift}
+ DSM_{t}^{do, shed} \cdot cost_{t}^{dsm, do, shed})
\cdot \omega_{t} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\\end{split}\]

Table: Symbols and attribute names of variables and parameters

Variables (V) and Parameters (P)

	symbol

	attribute

	type

	explanation

	\(DSM_{t}^{up}\)

	dsm_up[g, t]

	V

	DSM up shift (capacity shifted upwards)

	\(DSM_{t}^{do, shift}\)

	dsm_do_shift[g, t]

	V

	DSM down shift (capacity shifted downwards)

	\(DSM_{t}^{do, shed}\)

	dsm_do_shed[g, t]

	V

	DSM shedded (capacity shedded, i.e. not compensated for)

	\(\dot{E}_{t}\)

	SinkDSM.inputs

	V

	Energy flowing in from (electrical) inflow bus

	\(demand_{t}\)

	demand[t]

	P

	(Electrical) demand series (normalized)

	\(demand_{max}\)

	max_demand

	P

	Maximum demand value

	\(E_{t}^{do}\)

	capacity_down[t]

	P

	
Capacity allowed for a load adjustment downwards

(normalized; shifting + shedding)

	\(E_{t}^{up}\)

	capacity_up[t]

	P

	Capacity allowed for a shift upwards (normalized)

	\(E_{do, max}\)

	max_capacity_down

	P

	
Maximum capacity allowed for a load adjustment downwards

(shifting + shedding)

	\(E_{up, max}\)

	max_capacity_up

	P

	Maximum capacity allowed for a shift upwards

	\(\tau\)

	shift_interval

	P

	
interval (time within which the

energy balance must be levelled out)

	\(\eta\)

	efficiency

	P

	Efficiency for load shifting processes

	\(\mathbb{T}\)

	
	P

	Time steps of the model

	\(e_{shift}\)

	shift_eligibility

	P

	
Boolean parameter indicating if unit can be used

for load shifting

	\(e_{shed}\)

	shed_eligibility

	P

	
Boolean parameter indicating if unit can be used

for load shedding

	\(cost_{t}^{dsm, up}\)

	cost_dsm_up[t]

	P

	Variable costs for an upwards shift

	\(cost_{t}^{dsm, do, shift}\)

	cost_dsm_down_shift[t]

	P

	Variable costs for a downwards shift (load shifting)

	\(cost_{t}^{dsm, do, shed}\)

	cost_dsm_down_shift[t]

	P

	Variable costs for shedding load

	\(\omega_{t}\)

	
	P

	Objective weighting of the model for timestep t

	
CONSTRAINT_GROUP = True

	

	
class oemof.solph.components.experimental._sink_dsm.SinkDSMOemofInvestmentBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Constraints for SinkDSM with “oemof” approach and investment
defined

The following constraints are created for approach = “oemof”
with an investment object defined:

\[\begin{split}&
(1) \quad invest_{min} \leq invest \leq invest_{max} \\
& \\
&
(2) \quad DSM_{t}^{up} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shift} = \textrm{False} \\
& \\
&
(3) \quad DSM_{t}^{do, shed} = 0 \\
& \quad \quad \quad \quad \forall t \in \mathbb{T}
\quad \textrm{if} \quad e_{shed} = \textrm{False} \\
& \\
&
(4) \quad \dot{E}_{t} = demand_{t} \cdot (invest + E_{exist})
+ DSM_{t}^{up} - DSM_{t}^{do, shift} - DSM_{t}^{do, shed} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(5) \quad DSM_{t}^{up} \leq E_{t}^{up} \cdot (invest + E_{exist})
\cdot s_{flex, up} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(6) \quad DSM_{t}^{do, shift} + DSM_{t}^{do, shed} \leq
E_{t}^{do} \cdot (invest + E_{exist}) \cdot s_{flex, do} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\
& \\
&
(7) \quad \sum_{t=t_s}^{t_s+\tau} DSM_{t}^{up} \cdot \eta =
\sum_{t=t_s}^{t_s+\tau} DSM_{t}^{do, shift} \\
& \quad \quad \quad \quad \forall t_s \in
\{k \in \mathbb{T} \mid k \mod \tau = 0\} \\\end{split}\]

The following parts of the objective function are created:

	Investment annuity:

\[\begin{split}&
invest \cdot costs_{invest} \\\end{split}\]

	Variable costs:

\[\begin{split}&
(DSM_{t}^{up} \cdot cost_{t}^{dsm, up}
+ DSM_{t}^{do, shift} \cdot cost_{t}^{dsm, do, shift}
+ DSM_{t}^{do, shed} \cdot cost_{t}^{dsm, do, shed})
\cdot \omega_{t} \\
& \quad \quad \quad \quad \forall t \in \mathbb{T} \\\end{split}\]

See remarks in
oemof.solph.components.experimental._sink_dsm.SinkDSMOemofBlock.

Symbols and attribute names of variables and parameters

	Please refer to
oemof.solph.components.experimental._sink_dsm.SinkDSMOemofBlock.
for a variables and parameter description.

	The following variables and parameters are exclusively used for
investment modeling:

Variables (V) and Parameters (P)

	symbol

	attribute

	type

	explanation

	\(invest\)

	invest

	V

	
DSM capacity invested in

Equals to the additionally installed capacity.

The capacity share eligible for a shift is determined by flex share(s).

	\(invest_{min}\)

	investment.minimum

	P

	minimum investment

	\(invest_{max}\)

	investment.maximum

	P

	maximum investment

	\(E_{exist}\)

	investment.existing

	P

	existing DSM capacity

	\(s_{flex, up}\)

	flex_share_up

	P

	share of invested capacity that may be shift upwards at maximum

	\(s_{flex, do}\)

	flex_share_do

	P

	share of invested capacity that may be shift downwards at maximum

	\(costs_{invest}\)

	investment.ep_costs

	P

	specific investment annuity

	
CONSTRAINT_GROUP = True

	

oemof.solph.console_scripts

This module can be used to check the installation.

This is not an illustrated example.

	
oemof.solph._console_scripts.check_oemof_installation(silent=False)

	

oemof.solph.constraints

Additional constraints to be used in an oemof energy model.

	
oemof.solph.constraints.equate_variables(model, var1, var2, factor1=1, name=None)

	Adds a constraint to the given model that sets two variables to equal adaptable by a factor.

	Parameters

	
	var1 (pyomo.environ.Var) – First variable, to be set to equal with Var2 and multiplied with
factor1.

	var2 (pyomo.environ.Var) – Second variable, to be set equal to (Var1 * factor1).

	factor1 (float) – Factor to define the proportion between the variables.

	name (str) – Optional name for the equation e.g. in the LP file. By default the
name is: equate + string representation of var1 and var2.

	model (oemof.solph._models.Model) – Model to which the constraint is added.

The following constraints are build:

\[var_1 \cdot factor_1 = var_1\]

The symbols used are defined as follows (with Variables (V) and Parameters (P)):

	symbol

	attribute

	type

	explanation

	\(var_1\)

	pyomo.environ.Var`

	V

	First variable, to be set to equal with \(var_2\) and \(var_1\) multiplied with \(factor_1\)

	\(var_2\)

	pyomo.environ.Var`

	V

	Second variable, to be set equal to \(var_1 \cdot factor_1\)

	\(factor_1\)

	float

	P

	Factor to define the proportion between the variables. The default value is 1.

	name

	str

	P

	
Optional name for the equation e.g. in the LP file.

By default the name is: equate + string representation of \(var_1\) and \(var_2\).

	model

	oemof.solph.Model

	P

	Model to which the constraint is added

Examples

The following example shows how to define a transmission line in the
investment mode by connecting both investment variables. Note that the
equivalent periodical costs (epc) of the line are 40. You could also add
them to one line and set them to 0 for the other line.

>>> import pandas as pd
>>> from oemof import solph
>>> date_time_index = pd.date_range('1/1/2012', periods=5, freq='H')
>>> energysystem = solph.EnergySystem(timeindex=date_time_index)
>>> bel1 = solph.buses.Bus(label='electricity1')
>>> bel2 = solph.buses.Bus(label='electricity2')
>>> energysystem.add(bel1, bel2)
>>> energysystem.add(solph.components.Transformer(
... label='powerline_1_2',
... inputs={bel1: solph.flows.Flow()},
... outputs={bel2: solph.flows.Flow(
... investment=solph.Investment(ep_costs=20))}))
>>> energysystem.add(solph.components.Transformer(
... label='powerline_2_1',
... inputs={bel2: solph.flows.Flow()},
... outputs={bel1: solph.flows.Flow(
... investment=solph.Investment(ep_costs=20))}))
>>> om = solph.Model(energysystem)
>>> line12 = energysystem.groups['powerline_1_2']
>>> line21 = energysystem.groups['powerline_2_1']
>>> solph.constraints.equate_variables(
... om,
... om.InvestmentFlowBlock.invest[line12, bel2],
... om.InvestmentFlowBlock.invest[line21, bel1])

	
oemof.solph.constraints.equate_flows(model, flows1, flows2, factor1=1, name='equate_flows')

	Adds a constraint to the given model that sets the sum of two groups of
flows equal or proportional by a factor for each timestep.

The following constraints are built:

\[\text{factor_1} \cdot
\sum_{\text{flow in flows1}} \text{flow}_{t} =
\sum_{\text{flow in flows2}} \text{flow}_t \forall t\]

	Parameters

	
	model (oemof.solph.Model) – Model to which the constraint is added.

	flows1 (iterable) – First group of flows, to be set to equal with Var2 and multiplied with
factor1.

	flows2 (iterable) – Second group of flows, to be set equal to (Var1 * factor1).

	factor1 (numeric, default=1) – Factor to define the proportion between the two groups.

	name (str, default=’equate_flows’) – Name for the equation e.g. in the LP file.

	Returns

	the updated model.

	
oemof.solph.constraints.limit_active_flow_count(model, constraint_name, flows, lower_limit=0, upper_limit=None)

	Set limits (lower and/or upper) for the number of concurrently
active NonConvex flows. The flows are given as a list.

Total actual counts after optimization can be retrieved
calling the oemof.solph.Model.$(constraint_name)_count().

	Parameters

	
	model (oemof.solph.Model) – Model to which constraints are added

	constraint_name (string) – name for the constraint

	flows (list of flows) – flows (have to be NonConvex) in the format [(in, out)]

	lower_limit (integer) – minimum number of active flows in the list

	upper_limit (integer) – maximum number of active flows in the list

	Returns

	the updated model

Note

SimpleFlowBlock objects required to be NonConvex

Constraint:

\[N_{X,min} \le \sum_{n \in F} X_n(t)
\le N_{X,max} \forall t \in T\]

With F being the set of considered flows and
T being the set of time steps.

The symbols used are defined as follows
(with Variables (V) and Parameters (P)):

	symbol

	type

	explanation

	\(X_n(t)\)

	V

	status (0 or 1) of the flow \(n\) at time step \(t\)

	\(N_{X,min}\)

	P

	lower_limit

	\(N_{X,max}\)

	P

	upper_limit

	
oemof.solph.constraints.limit_active_flow_count_by_keyword(model, keyword, lower_limit=0, upper_limit=None)

	This wrapper for limit_active_flow_count allows to set limits
to the count of concurrently active flows by using a keyword
instead of a list. The constraint will be named $(keyword)_count.

	Parameters

	
	model (oemof.solph.Model) – Model to which constraints are added

	keyword (string) – keyword to consider (searches all NonConvexFlows)

	lower_limit (integer) – minimum number of active flows having the keyword

	upper_limit (integer) – maximum number of active flows having the keyword

	Returns

	the updated model

See also

limit_active_flow_count()

	
oemof.solph.constraints.emission_limit(om, flows=None, limit=None)

	Short handle for generic_integral_limit() with keyword=”emission_factor”.

Note

Flow objects require an attribute “emission_factor”!

	
oemof.solph.constraints.generic_integral_limit(om, keyword, flows=None, limit=None)

	Set a global limit for flows weighted by attribute named keyword.
The attribute named keyword has to be added
to every flow you want to take into account.

Total value of keyword attributes after optimization can be retrieved
calling the
om.oemof.solph._models.Model.integral_limit_${keyword}().

	Parameters

	
	om (oemof.solph.Model) – Model to which constraints are added.

	flows (dict) – Dictionary holding the flows that should be considered in constraint.
Keys are (source, target) objects of the Flow. If no dictionary is
given all flows containing the keyword attribute will be
used.

	keyword (string) – attribute to consider

	limit (numeric) – Absolute limit of keyword attribute for the energy system.

Note

Flow objects require an attribute named like keyword!

Constraint:

\[\sum_{i \in F_E} \sum_{t \in T} P_i(t) \cdot w_i(t)
\cdot \tau(t) \leq M\]

With F_I being the set of flows considered for the integral limit and
T being the set of time steps.

The symbols used are defined as follows
(with Variables (V) and Parameters (P)):

	math. symbol

	type

	explanation

	\(P_n(t)\)

	V

	power flow \(n\) at time step \(t\)

	\(w_N(t)\)

	P

	weight given to Flow named according to keyword

	\(\tau(t)\)

	P

	width of time step \(t\)

	\(L\)

	P

	global limit given by keyword limit

Examples

>>> import pandas as pd
>>> from oemof import solph
>>> date_time_index = pd.date_range('1/1/2012', periods=5, freq='H')
>>> energysystem = solph.EnergySystem(timeindex=date_time_index)
>>> bel = solph.buses.Bus(label='electricityBus')
>>> flow1 = solph.flows.Flow(
... nominal_value=100,
... custom_attributes={"my_factor": 0.8},
...)
>>> flow2 = solph.flows.Flow(nominal_value=50)
>>> src1 = solph.components.Source(label='source1', outputs={bel: flow1})
>>> src2 = solph.components.Source(label='source2', outputs={bel: flow2})
>>> energysystem.add(bel, src1, src2)
>>> model = solph.Model(energysystem)
>>> flow_with_keyword = {(src1, bel): flow1, }
>>> model = solph.constraints.generic_integral_limit(
... model, "my_factor", flow_with_keyword, limit=777)

	
oemof.solph.constraints.additional_investment_flow_limit(model, keyword, limit=None)

	Global limit for investment flows weighted by an attribute keyword.

This constraint is only valid for Flows not for components such as an
investment storage.

The attribute named by keyword has to be added to every Investment
attribute of the flow you want to take into account.
Total value of keyword attributes after optimization can be retrieved
calling the oemof.solph._models.Model.invest_limit_${keyword}().

\[\sum_{i \in IF} P_i \cdot w_i \leq limit\]

With IF being the set of InvestmentFlows considered for the integral
limit.

The symbols used are defined as follows
(with Variables (V) and Parameters (P)):

	symbol

	attribute

	type

	explanation

	\(P_{i}\)

	InvestmentFlowBlock.invest[i, o]

	V

	installed capacity of investment flow

	\(w_i\)

	keyword

	P

	weight given to investment flow named according to keyword

	\(limit\)

	limit

	P

	global limit given by keyword limit

	Parameters

	
	model (oemof.solph.Model) – Model to which constraints are added.

	keyword (attribute to consider) – All flows with Investment attribute containing the keyword will be
used.

	limit (numeric) – Global limit of keyword attribute for the energy system.

Note

The Investment attribute of the considered (Investment-)flows requires an
attribute named like keyword!

Examples

>>> import pandas as pd
>>> from oemof import solph
>>> date_time_index = pd.date_range('1/1/2020', periods=5, freq='H')
>>> es = solph.EnergySystem(timeindex=date_time_index)
>>> bus = solph.buses.Bus(label='bus_1')
>>> sink = solph.components.Sink(label="sink", inputs={bus:
... solph.flows.Flow(nominal_value=10, fix=[10, 20, 30, 40, 50])})
>>> src1 = solph.components.Source(
... label='source_0', outputs={bus: solph.flows.Flow(
... investment=solph.Investment(
... ep_costs=50, custom_attributes={"space": 4},
...))
... })
>>> src2 = solph.components.Source(
... label='source_1', outputs={bus: solph.flows.Flow(
... investment=solph.Investment(
... ep_costs=100, custom_attributes={"space": 1},
...))
... })
>>> es.add(bus, sink, src1, src2)
>>> model = solph.Model(es)
>>> model = solph.constraints.additional_investment_flow_limit(
... model, "space", limit=1500)
>>> a = model.solve(solver="cbc")
>>> int(round(model.invest_limit_space()))
1500

	
oemof.solph.constraints.investment_limit(model, limit=None)

	Set an absolute limit for the total investment costs of an investment
optimization problem:

\[\sum_{investment_costs} \leq limit\]

	Parameters

	
	model (oemof.solph._models.Model) – Model to which the constraint is added

	limit (float) – Absolute limit of the investment (i.e. RHS of constraint)

	
oemof.solph.constraints.shared_limit(model, quantity, limit_name, components, weights, lower_limit=0, upper_limit=None)

	Adds a constraint to the given model that restricts
the weighted sum of variables to a corridor.

The following constraints are build:

\[l_\mathrm{low} \le \sum v_i(t) \times w_i(t) \le l_\mathrm{up}
\forall t\]

	Parameters

	
	model (oemof.solph.Model) – Model to which the constraint is added

	limit_name (string) – Name of the constraint to create

	quantity (pyomo.core.base.var.IndexedVar) – Shared Pyomo variable for all components of a type.
(\(v_i(t)\))

	components (list of components) – list of components of the same type

	weights (list of numeric values) – has to have the same length as the list of components
(\(w_i(t)\))

	lower_limit (numeric) – the lower limit (\(l_\mathrm{low}\))

	upper_limit (numeric) – the lower limit (\(l_\mathrm{up}\))

Examples

The constraint can e.g. be used to define a common storage
that is shared between parties but that do not exchange
energy on balance sheet.
Thus, every party has their own bus and storage, respectively,
to model the energy flow. However, as the physical storage is shared,
it has a common limit.

>>> import pandas as pd
>>> from oemof import solph
>>> date_time_index = pd.date_range('1/1/2012', periods=5, freq='H')
>>> energysystem = solph.EnergySystem(timeindex=date_time_index)
>>> b1 = solph.buses.Bus(label="Party1Bus")
>>> b2 = solph.buses.Bus(label="Party2Bus")
>>> storage1 = solph.components.GenericStorage(
... label="Party1Storage",
... nominal_storage_capacity=5,
... inputs={b1: solph.flows.Flow()},
... outputs={b1: solph.flows.Flow()}
...)
>>> storage2 = solph.components.GenericStorage(
... label="Party2Storage",
... nominal_storage_capacity=5,
... inputs={b1: solph.flows.Flow()},
... outputs={b1: solph.flows.Flow()}
...)
>>> energysystem.add(b1, b2, storage1, storage2)
>>> components = [storage1, storage2]
>>> model = solph.Model(energysystem)
>>> solph.constraints.shared_limit(
... model,
... model.GenericStorageBlock.storage_content,
... "limit_storage", components,
... [1, 1], upper_limit=5
...)

oemof.solph.EnergySystem

solph version of oemof.network.energy_system

	
class oemof.solph._energy_system.EnergySystem(timeindex=None, timeincrement=None, infer_last_interval=None, **kwargs)

	Bases: oemof.network.energy_system.EnergySystem

A variant of the class EnergySystem from
<oemof.network.network.energy_system.EnergySystem> specially tailored to
solph.

In order to work in tandem with solph, instances of this class always use
solph.GROUPINGS <oemof.solph.GROUPINGS>. If custom groupings are
supplied via the groupings keyword argument, solph.GROUPINGS
<oemof.solph.GROUPINGS> is prepended to those.

If you know what you are doing and want to use solph without
solph.GROUPINGS <oemof.solph.GROUPINGS>, you can just use
EnergySystem <oemof.network.network.energy_system.EnergySystem>` of
oemof.network directly.

	Parameters

	
	timeindex (pandas.DatetimeIndex)

	timeincrement (iterable)

	infer_last_interval (bool) – Add an interval to the last time point. The end time of this interval
is unknown so it does only work for an equidistant DatetimeIndex with
a ‘freq’ attribute that is not None. The parameter has no effect on the
timeincrement parameter.

	kwargs

	
oemof.solph._energy_system.create_time_index(year: int = None, interval: float = 1, number: int = None, start: datetime.datetime = None)

	Create a datetime index for one year.

Notes

To create 8760 hourly intervals for a non leap year a datetime index with
8761 time points need to be created. So the number of time steps is always
the number of intervals plus one.

	Parameters

	
	year (int, datetime) – The year of the index. If number and start is set the year parameter is
ignored.

	interval (float) – The time interval in hours e.g. 0.5 for 30min or 2 for a two hour
interval (default: 1).

	number (int) – The number of time intervals. By default number is calculated to create
an index of one year. For a shorter or longer period the number of
intervals can be set by the user.

	start (datetime.datetime or datetime.date) – Optional start time. If start is not set, 00:00 of the first day of
the given year is the start time.

Examples

>>> len(create_time_index(2014))
8761
>>> len(create_time_index(2012)) # leap year
8785
>>> len(create_time_index(2014, interval=0.5))
17521
>>> len(create_time_index(2014, interval=0.5, number=10))
11
>>> len(create_time_index(2014, number=10))
11
>>> str(create_time_index(2014, interval=0.5, number=10)[-1])
'2014-01-01 05:00:00'
>>> str(create_time_index(2014, interval=2, number=10)[-1])
'2014-01-01 20:00:00'

oemof.solph.Flow

Flow

solph version of oemof.network.Edge

	
class oemof.solph.flows._flow.Flow(nominal_value=None, variable_costs=0, min=None, max=None, fix=None, positive_gradient_limit=None, negative_gradient_limit=None, full_load_time_max=None, full_load_time_min=None, integer=False, bidirectional=False, investment=None, nonconvex=None, summed_max=None, summed_min=None, custom_attributes=None)

	Bases: oemof.network.network.Edge

Defines a flow between two nodes.

Keyword arguments are used to set the attributes of this flow. Parameters
which are handled specially are noted below.
For the case where a parameter can be either a scalar or an iterable, a
scalar value will be converted to a sequence containing the scalar value at
every index. This sequence is then stored under the paramter’s key.

	Parameters

	
	nominal_value (numeric, \(P_{nom}\)) – The nominal value of the flow. If this value is set the corresponding
optimization variable of the flow object will be bounded by this value
multiplied with min(lower bound)/max(upper bound).

	variable_costs (numeric (iterable or scalar), default: 0, \(c\)) – The costs associated with one unit of the flow per hour. The
costs for each timestep (\(P_t \cdot c \cdot \delta(t)\))
will be added to the objective expression of the optimization problem.

	max (numeric (iterable or scalar), \(f_{max}\)) – Normed maximum value of the flow. The flow absolute maximum will be
calculated by multiplying nominal_value with max

	min (numeric (iterable or scalar), \(f_{min}\)) – Normed minimum value of the flow (see max).

	fix (numeric (iterable or scalar), \(f_{fix}\)) – Normed fixed value for the flow variable. Will be multiplied with the
nominal_value to get the absolute value.

	positive_gradient_limit (numeric (iterable, scalar or None)) – the normed upper bound on the positive difference
(flow[t-1] < flow[t]) of two consecutive flow values.

	negative_gradient_limit (numeric (iterable, scalar or None)) – the normed upper bound on the negative difference
(flow[t-1] > flow[t]) of two consecutive flow values.

	full_load_time_max (numeric, \(t_{full_load,max}\)) – Upper bound on the summed flow expressed as the equivalent time that
the flow would have to run at full capacity to yield the same sum. The
value will be multiplied with the nominal_value to get the absolute
limit.

	full_load_time_min (numeric, \(t_{full_load,min}\)) – Lower bound on the summed flow expressed as the equivalent time that
the flow would have to run at full capacity to yield the same sum. The
value will be multiplied with the nominal_value to get the absolute
limit.

	integer (boolean) – Set True to bound the flow values to integers.

	investment (Investment) – Object indicating if a nominal_value of the flow is determined by
the optimization problem. Note: This will refer all attributes to an
investment variable rather than to the nominal_value. The nominal_value
should not be set (or set to None) if an investment object is used.

	nonconvex (NonConvex) – If a nonconvex flow object is added here, the flow constraints will
be altered significantly as the mathematical model for the flow
will be different, i.e. constraint etc. from
NonConvexFlowBlock
will be used instead of
SimpleFlowBlock.

Notes

See SimpleFlowBlock
for the variables, constraints and objective parts, that are created for
a Flow object.

Examples

Creating a fixed flow object:

>>> f = Flow(nominal_value=2, fix=[10, 4, 4], variable_costs=5)
>>> f.variable_costs[2]
5
>>> f.fix[2]
4

Creating a flow object with time-depended lower and upper bounds:

>>> f1 = Flow(min=[0.2, 0.3], max=0.99, nominal_value=100)
>>> f1.max[1]
0.99

SimpleFlow

Creating sets, variables, constraints and parts of the objective function
for Flow objects with neither nonconvex nor investment options.

	
class oemof.solph.flows._simple_flow_block.SimpleFlowBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Flow block with definitions for standard flows.

See Flow class for all parameters of the
Flow.

	
_create_constraints()

	Creates all constraints for standard flows.

The following constraints are created, if the appropriate attribute of
the Flow (see Flow) object is set:

	
	Flow.full_load_time_max is not None (full_load_time_max_constr):

	
\[\sum_t P(t) \cdot \tau \leq F_{max} \cdot P_{nom}\]

	
	Flow.full_load_time_min is not None (full_load_time_min_constr):

	
\[\sum_t P(t) \cdot \tau \geq F_{min} \cdot P_{nom}\]

	
	Flow.negative_gradient is not None (negative_gradient_constr):

	
\[P(t-1) - P(t) \geq ve_n(t)\]

	
	Flow.positive_gradient is not None (positive_gradient_constr):

	
\[P(t) - P(t-1) \geq ve_p(t)\]

	
	Flow.integer is True

	
\[P(t) = i(t)\]

	
_create_variables(group)

	Creates all variables for standard flows.

All Flow objects are indexed by a starting and ending node
\((i, o)\), which is omitted in the following for the sake of
convenience. The creation of some variables depend on the values of
Flow attributes. The following variables are created:

	
	\(P(t)\)

	Actual flow value (created in Model).
The variable is bound to:
\(f_\mathrm{min}(t) \cdot P_\mathrm{nom}
\le P(t)
\le f_\mathrm{max}(t) \cdot P_\mathrm{nom}\).

If Flow.fix is not None the variable is bound to
\(P(t) = f_\mathrm{fix}(t) \cdot P_\mathrm{nom}\).

	
	\(\dot{P}_{down}\) (Flow.negative_gradient is not None)

	Difference of a flow in consecutive timesteps if flow is reduced.
The variable is bound to: \(0 \ge ve_n \ge ve_n^{max}\).

	
	\(\dot{P}_{up}\) (Flow.positive_gradient is not None)

	Difference of a flow in consecutive timesteps if flow is increased.
The variable is bound to: \(0 \ge ve_p \ge ve_p^{max}\).

	
_create_sets(group)

	Creates all sets for standard flows.

	
_objective_expression()

	Objective expression for all standard flows with fixed costs
and variable costs.

Depending on the attributes of the Flow object the following parts of
the objective function are created:

	
	Flow.variable_costs is not None:

	
\[\sum_{(i,o)} \sum_t P(t) \cdot c_{var}(i, o, t)\]

Note

See the Flow class for the definition of
all parameters from the “List of Parameters above.

InvestmentFlow

Creating sets, variables, constraints and parts of the objective function
for Flow objects with investment but without nonconvex option.

	
class oemof.solph.flows._investment_flow_block.InvestmentFlowBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

Block for all flows with Investment being not None.

	
_create_constraints()

	Creates all constraints for standard flows.

Depending on the attributes of the InvestmentFlowBlock
and SimpleFlowBlock, different constraints are created.
The following constraint is created for all
InvestmentFlowBlock:

Upper bound for the flow value

\[P(t) \le (P_{invest} + P_{exist}) \cdot f_{max}(t)\]

Depeding on the attribute nonconvex, the constraints for
the bounds of the decision variable \(P_{invest}\) are different:

	nonconvex = False

\[P_{invest, min} \le P_{invest} \le P_{invest, max}\]

	nonconvex = True

\[\begin{split}&
P_{invest, min} \cdot Y_{invest} \le P_{invest}\\
&
P_{invest} \le P_{invest, max} \cdot Y_{invest}\\\end{split}\]

For all InvestmentFlowBlock (independent of the attribute
nonconvex), the following additional constraints are created,
if the appropriate attribute of the SimpleFlowBlock (see
oemof.solph.network.SimpleFlowBlock) is set:

	fix is not None

Actual value constraint for investments with fixed flow values

\[P(t) = (P_{invest} + P_{exist}) \cdot f_{fix}(t)\]

	min != 0

Lower bound for the flow values

\[P(t) \geq (P_{invest} + P_{exist}) \cdot f_{min}(t)\]

	full_load_time_max is not None

Upper bound for the sum of all flow values
(e.g. maximum full load hours)

\[\sum_t P(t) \cdot \tau(t) \leq (P_{invest} + P_{exist})
\cdot t_{full_load, min}\]

	full_load_time_min is not None

Lower bound for the sum of all flow values
(e.g. minimum full load hours)

\[\sum_t P(t) \cdot \tau(t) \geq (P_{invest} + P_{exist})
\cdot t_{full_load, min}\]

	
_create_variables(_)

	Creates all variables for investment flows.

All InvestmentFlowBlock are indexed by a starting and ending node
\((i, o)\), which is omitted in the following for the sake
of convenience. The following variables are created:

	\(P(t)\)

Actual flow value
(created in oemof.solph.models.BaseModel).

	\(P_{invest}\)

Value of the investment variable, i.e. equivalent to the nominal
value of the flows after optimization.

	\(Y_{invest}\)

Binary variable for the status of the investment, if
nonconvex is True.

	
_create_sets(group)

	Creates all sets for investment flows.

	
_objective_expression()

	Objective expression for flows with investment attribute of type
class:.Investment. The returned costs are fixed, variable and
investment costs.

The part of the objective function added by the InvestmentFlowBlock
also depends on whether a convex or nonconvex
InvestmentFlowBlock is selected. The following parts of the
objective function are created:

	nonconvex = False

\[P_{invest} \cdot c_{invest,var}\]

	nonconvex = True

\[\begin{split}P_{invest} \cdot c_{invest,var}
+ c_{invest,fix} \cdot Y_{invest}\\\end{split}\]

See oemof.solph.options.Investment for all parameters of the
Investment class.

See oemof.solph.network.SimpleFlowBlock for all parameters of the SimpleFlowBlock
class.

The total value of all costs of all InvestmentFlowBlock can be retrieved
calling om.InvestmentFlowBlock.investment_costs.expr().

Note

In case of a nonconvex investment flow (nonconvex=True),
the existing flow capacity \(P_{exist}\) needs to be zero.

Note

See also Flow,
SimpleFlowBlock and
Investment

NonConvexFlow

Creating sets, variables, constraints and parts of the objective function
for Flow objects with nonconvex but without investment options.

	
class oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock(*args, **kwargs)

	Bases: pyomo.core.base.block.ScalarBlock

	
_create_constraints()

	The following constraints are created:

	
_status_nominal_constraint()

	
\[\begin{split}P_{max,status}(t) = Y_{status}(t) \cdot P_{nom}, \\
\forall t \in \textrm{TIMESTEPS}.\end{split}\]

	
_minimum_flow_constraint()

	
\[\begin{split}P(t) \geq min(i, o, t) \cdot P_{nom} \
 \cdot Y_{status}(t), \\
\forall (i, o) \in \textrm{NONCONVEX_FLOWS}, \\
\forall t \in \textrm{TIMESTEPS}.\end{split}\]

	
_maximum_flow_constraint()

	
\[\begin{split}P(t) \leq max(i, o, t) \cdot P_{nom} \
 \cdot status(t), \\
\forall t \in \textrm{TIMESTEPS}, \\
\forall (i, o) \in \textrm{NONCONVEX_FLOWS}.\end{split}\]

	
_shared_constraints_for_non_convex_flows()

	
	
_startup_constraint()

	
\[\begin{split}Y_{startup}(t) \geq Y_{status}(t) - Y_{status}(t-1) \\
\forall t \in \textrm{TIMESTEPS}, \\
\forall \textrm{STARTUPFLOWS}.\end{split}\]

	
_max_startup_constraint()

	
\[\begin{split}\sum_{t \in \textrm{TIMESTEPS}} Y_{startup}(t) \leq \
 N_{start}(i,o)\\
\forall (i,o) \in \textrm{MAXSTARTUPFLOWS}.\end{split}\]

	
_shutdown_constraint()

	
\[\begin{split}Y_{shutdown}(t) \geq Y_{status}(t-1) - Y_{status}(t) \\
\forall t \in \textrm{TIMESTEPS}, \\
\forall \textrm{SHUTDOWNFLOWS}.\end{split}\]

	
_max_shutdown_constraint()

	
\[\begin{split}\sum_{t \in \textrm{TIMESTEPS}} Y_{startup}(t) \leq \
 N_{shutdown}(i,o)\\
\forall (i,o) \in \textrm{MAXSHUTDOWNFLOWS}.\end{split}\]

	
_min_uptime_constraint()

	
\[\begin{split}(Y_{status}(t)-Y_{status}(t-1)) \cdot t_{up,minimum} \\
\leq \sum_{n=0}^{t_{up,minimum}-1} Y_{status}(t+n) \\
\forall t \in \textrm{TIMESTEPS} | \\
t \neq \{0..t_{up,minimum}\} \cup \
\{t_max-t_{up,minimum}..t_max\} , \\
\forall (i,o) \in \textrm{MINUPTIMEFLOWS}.
\\ \\
Y_{status}(t) = Y_{status,0} \\
\forall t \in \textrm{TIMESTEPS} | \\
t = \{0..t_{up,minimum}\} \cup \
\{t_max-t_{up,minimum}..t_max\} , \\
\forall (i,o) \in \textrm{MINUPTIMEFLOWS}.\end{split}\]

	
_min_downtime_constraint()

	
\[\begin{split}(Y_{status}(t-1) - Y_{status}(t)) \
\cdot t_{down,minimum} \\
\leq t_{down,minimum} \
- \sum_{n=0}^{t_{down,minimum}-1} Y_{status}(t+n) \\
\forall t \in \textrm{TIMESTEPS} | \\
t \neq \{0..t_{down,minimum}\} \cup \
\{t_max-t_{down,minimum}..t_max\} , \\
\forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}.
\\ \\
Y_{status}(t) = Y_{status,0} \\
\forall t \in \textrm{TIMESTEPS} | \\
t = \{0..t_{down,minimum}\} \cup \
\{t_max-t_{down,minimum}..t_max\} , \\
\forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}.\end{split}\]

	positive_gradient_constraint

	
\[\begin{split}P(t) \cdot Y_{status}(t)
- P(t-1) \cdot Y_{status}(t-1) \leq \
\dot{P}_{up}(t), \\
\forall t \in \textrm{TIMESTEPS}.\end{split}\]

	negative_gradient_constraint

	
\[\begin{split}P(t-1) \cdot Y_{status}(t-1)
- P(t) \cdot Y_{status}(t) \leq \
\dot{P}_{down}(t), \\
\forall t \in \textrm{TIMESTEPS}.\end{split}\]

	
_create_variables()

	
	\(Y_{status}\) (binary) om.NonConvexFlowBlock.status:

	Variable indicating if flow is >= 0

	\(P_{max,status}\) Status_nominal (continuous)

	Variable indicating if flow is >= 0

	
_variables_for_non_convex_flows()

	
	\(Y_{startup}\) (binary) NonConvexFlowBlock.startup:

	Variable indicating startup of flow (component) indexed by
STARTUPFLOWS

	\(Y_{shutdown}\) (binary) NonConvexFlowBlock.shutdown:

	Variable indicating shutdown of flow (component) indexed by
SHUTDOWNFLOWS

	\(\dot{P}_{up}\) (continuous)

	NonConvexFlowBlock.positive_gradient:
Variable indicating the positive gradient, i.e. the load increase
between two consecutive timesteps, indexed by
POSITIVE_GRADIENT_FLOWS

	\(\dot{P}_{down}\) (continuous)

	NonConvexFlowBlock.negative_gradient:
Variable indicating the negative gradient, i.e. the load decrease
between two consecutive timesteps, indexed by
NEGATIVE_GRADIENT_FLOWS

	
_create_sets(group)

	The following sets are created: (-> see basic sets at
Model)

	NONCONVEX_FLOWS

	A set of flows with the attribute nonconvex of type
options.NonConvex.

	
_sets_for_non_convex_flows(group)

	Creates all sets for non-convex flows.

	MIN_FLOWS

	A subset of set NONCONVEX_FLOWS with the attribute min
being not None in the first timestep.

	ACTIVITYCOSTFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
activity_costs being not None.

	INACTIVITYCOSTFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
inactivity_costs being not None.

	STARTUPFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
maximum_startups or startup_costs
being not None.

	MAXSTARTUPFLOWS

	A subset of set STARTUPFLOWS with the attribute
maximum_startups being not None.

	SHUTDOWNFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
maximum_shutdowns or shutdown_costs
being not None.

	MAXSHUTDOWNFLOWS

	A subset of set SHUTDOWNFLOWS with the attribute
maximum_shutdowns being not None.

	MINUPTIMEFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
minimum_uptime being not None.

	MINDOWNTIMEFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
minimum_downtime being not None.

	POSITIVE_GRADIENT_FLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
positive_gradient being not None.

	NEGATIVE_GRADIENT_FLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
negative_gradient being not None.

	
_objective_expression()

	The following terms are to the cost function:

	
_startup_costs()

	
\[\sum_{i, o \in STARTUPFLOWS} \sum_t Y_{startup}(t) \
\cdot c_{startup}\]

	
_shutdown_costs()

	
\[\sum_{SHUTDOWNFLOWS} \sum_t Y_{shutdown}(t) \
\cdot c_{shutdown}\]

	
_activity_costs()

	
\[\sum_{ACTIVITYCOSTFLOWS} \sum_t Y_{status}(t) \
\cdot c_{activity}\]

	
_inactivity_costs()

	
\[\sum_{INACTIVITYCOSTFLOWS} \sum_t (1 - Y_{status}(t)) \
\cdot c_{inactivity}\]

Parameters are defined in Flow.

InvestNonConvexFlow

Creating sets, variables, constraints and parts of the objective function
for Flow objects with both Nonconvex and Investment options.

	
class oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock(*args, **kwargs)

	Bases: oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock

	
_create_constraints()

	
	
_shared_constraints_for_non_convex_flows()

	
	
_startup_constraint()

	
\[\begin{split}Y_{startup}(t) \geq Y_{status}(t) - Y_{status}(t-1) \\
\forall t \in \textrm{TIMESTEPS}, \\
\forall \textrm{STARTUPFLOWS}.\end{split}\]

	
_max_startup_constraint()

	
\[\begin{split}\sum_{t \in \textrm{TIMESTEPS}} Y_{startup}(t) \leq \
 N_{start}(i,o)\\
\forall (i,o) \in \textrm{MAXSTARTUPFLOWS}.\end{split}\]

	
_shutdown_constraint()

	
\[\begin{split}Y_{shutdown}(t) \geq Y_{status}(t-1) - Y_{status}(t) \\
\forall t \in \textrm{TIMESTEPS}, \\
\forall \textrm{SHUTDOWNFLOWS}.\end{split}\]

	
_max_shutdown_constraint()

	
\[\begin{split}\sum_{t \in \textrm{TIMESTEPS}} Y_{startup}(t) \leq \
 N_{shutdown}(i,o)\\
\forall (i,o) \in \textrm{MAXSHUTDOWNFLOWS}.\end{split}\]

	
_min_uptime_constraint()

	
\[\begin{split}(Y_{status}(t)-Y_{status}(t-1)) \cdot t_{up,minimum} \\
\leq \sum_{n=0}^{t_{up,minimum}-1} Y_{status}(t+n) \\
\forall t \in \textrm{TIMESTEPS} | \\
t \neq \{0..t_{up,minimum}\} \cup \
\{t_max-t_{up,minimum}..t_max\} , \\
\forall (i,o) \in \textrm{MINUPTIMEFLOWS}.
\\ \\
Y_{status}(t) = Y_{status,0} \\
\forall t \in \textrm{TIMESTEPS} | \\
t = \{0..t_{up,minimum}\} \cup \
\{t_max-t_{up,minimum}..t_max\} , \\
\forall (i,o) \in \textrm{MINUPTIMEFLOWS}.\end{split}\]

	
_min_downtime_constraint()

	
\[\begin{split}(Y_{status}(t-1) - Y_{status}(t)) \
\cdot t_{down,minimum} \\
\leq t_{down,minimum} \
- \sum_{n=0}^{t_{down,minimum}-1} Y_{status}(t+n) \\
\forall t \in \textrm{TIMESTEPS} | \\
t \neq \{0..t_{down,minimum}\} \cup \
\{t_max-t_{down,minimum}..t_max\} , \\
\forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}.
\\ \\
Y_{status}(t) = Y_{status,0} \\
\forall t \in \textrm{TIMESTEPS} | \\
t = \{0..t_{down,minimum}\} \cup \
\{t_max-t_{down,minimum}..t_max\} , \\
\forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}.\end{split}\]

	positive_gradient_constraint

	
\[\begin{split}P(t) \cdot Y_{status}(t)
- P(t-1) \cdot Y_{status}(t-1) \leq \
\dot{P}_{up}(t), \\
\forall t \in \textrm{TIMESTEPS}.\end{split}\]

	negative_gradient_constraint

	
\[\begin{split}P(t-1) \cdot Y_{status}(t-1)
- P(t) \cdot Y_{status}(t) \leq \
\dot{P}_{down}(t), \\
\forall t \in \textrm{TIMESTEPS}.\end{split}\]

	
_minimum_invest_constraint()

	
\[P_{invest, min} \le P_{invest}\]

	
_maximum_invest_constraint()

	
\[P_{invest} \le P_{invest, max}\]

	
_minimum_flow_constraint()

	
\[\begin{split}P(t) \geq min(i, o, t) \cdot P_{nom} \
 \cdot Y_{status}(t), \\
\forall (i, o) \in \textrm{NONCONVEX_FLOWS}, \\
\forall t \in \textrm{TIMESTEPS}.\end{split}\]

	
_maximum_flow_constraint()

	
\[\begin{split}P(t) \leq max(i, o, t) \cdot P_{nom} \
 \cdot status(t), \\
\forall t \in \textrm{TIMESTEPS}, \\
\forall (i, o) \in \textrm{NONCONVEX_FLOWS}.\end{split}\]

	
_linearised_investment_constraints()

	The resulting constraint is equivalent to

\[status_nominal(i,o,t) = Y_{status}(t) \cdot P_{invest}.\]

However, \(status\) and \(invest\) are variables
(binary and continuous, respectively).
Thus, three constraints are created which combination is equivalent.

	
_linearised_investment_constraint_1()

	
\[status_nominal(i,o,t)
\leq Y_{status}(t) \cdot P_{invest, max}\quad (1)\]

	
_linearised_investment_constraint_2()

	
\[status_nominal(i,o,t) \leq P_{invest}\quad (2)\]

	
_linearised_investment_constraint_3()

	
\[status_nominal(i,o,t) \geq
P_{invest} - (1 - Y_{status}(t)) \cdot P_{invest, max}\quad (3)\]

The following cases may occur:

	
	Case \(status = 0\)

	
\[\begin{split}(1) \Rightarrow status_nominal = 0,\\
(2) \Rightarrow \text{ trivially fulfilled},\\
(3) \Rightarrow \text{ trivially fulfilled}.\end{split}\]

	
	Case \(status = 1\)

	
\[\begin{split}(1) \Rightarrow \text{ trivially fulfilled},\\
(2) \Rightarrow status_nominal \leq P_{invest},\\
(3) \Rightarrow status_nominal \geq P_{invest}.\end{split}\]

So, in total \(status_nominal = P_{invest}\),
which is the desired result.

	
_create_variables()

	
	Status variable (binary) om.InvestNonConvexFlowBlock.status:

	Variable indicating if flow is >= 0 indexed by FLOWS

	:math::P_{invest} InvestNonConvexFlowBlock.invest

	Value of the investment variable, i.e. equivalent to the nominal
value of the flows after optimization.

	:math::status_nominal(i,o,t) (non-negative real number)

	New paramater representing the multiplication of P_{invest}
(from the <class ‘oemof.solph.flows.InvestmentFlow’>) and
status(i,o,t) (from the
<class ‘oemof.solph.flows.NonConvexFlow’>)
used for the constraints on the minimum and maximum
flow constraints.

	
_variables_for_non_convex_flows()

	
	\(Y_{startup}\) (binary) NonConvexFlowBlock.startup:

	Variable indicating startup of flow (component) indexed by
STARTUPFLOWS

	\(Y_{shutdown}\) (binary) NonConvexFlowBlock.shutdown:

	Variable indicating shutdown of flow (component) indexed by
SHUTDOWNFLOWS

	\(\dot{P}_{up}\) (continuous)

	NonConvexFlowBlock.positive_gradient:
Variable indicating the positive gradient, i.e. the load increase
between two consecutive timesteps, indexed by
POSITIVE_GRADIENT_FLOWS

	\(\dot{P}_{down}\) (continuous)

	NonConvexFlowBlock.negative_gradient:
Variable indicating the negative gradient, i.e. the load decrease
between two consecutive timesteps, indexed by
NEGATIVE_GRADIENT_FLOWS

	
_create_sets(group)

	Creates all sets for investment non-convex flows.

	INVEST_NON_CONVEX_FLOWS

	A set of flows with the attribute nonconvex of type
options.NonConvex and the attribute invest
of type options.Invest.

	
_sets_for_non_convex_flows(group)

	Creates all sets for non-convex flows.

	MIN_FLOWS

	A subset of set NONCONVEX_FLOWS with the attribute min
being not None in the first timestep.

	ACTIVITYCOSTFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
activity_costs being not None.

	INACTIVITYCOSTFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
inactivity_costs being not None.

	STARTUPFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
maximum_startups or startup_costs
being not None.

	MAXSTARTUPFLOWS

	A subset of set STARTUPFLOWS with the attribute
maximum_startups being not None.

	SHUTDOWNFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
maximum_shutdowns or shutdown_costs
being not None.

	MAXSHUTDOWNFLOWS

	A subset of set SHUTDOWNFLOWS with the attribute
maximum_shutdowns being not None.

	MINUPTIMEFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
minimum_uptime being not None.

	MINDOWNTIMEFLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
minimum_downtime being not None.

	POSITIVE_GRADIENT_FLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
positive_gradient being not None.

	NEGATIVE_GRADIENT_FLOWS

	A subset of set NONCONVEX_FLOWS with the attribute
negative_gradient being not None.

	
_objective_expression()

	Objective expression for nonconvex investment flows.

	If nonconvex.startup_costs is set by the user:

	
\[\sum_{i, o \in STARTUPFLOWS} \sum_t startup(i, o, t) \
\cdot c_{startup}\]

	If nonconvex.shutdown_costs is set by the user:

	
\[\sum_{i, o \in SHUTDOWNFLOWS} \sum_t shutdown(i, o, t) \
\cdot c_{shutdown}\]

\[P_{invest} \cdot c_{invest,var}\]

oemof.solph.groupings

Groupings needed on an energy system for it to work with solph.

If you want to use solph on an energy system, you need to create it with these
groupings specified like this:

from oemof.network import EnergySystem
import oemof.solph as solph

energy_system = EnergySystem(groupings=solph.GROUPINGS)

	
oemof.solph._groupings.constraint_grouping(node, fallback=<function <lambda>>)

	Grouping function for constraints.

This function can be passed in a list to groupings of
oemof.solph.network.EnergySystem.

	Parameters

	
	node (Node <oemof.network.Node) – The node for which the figure out a constraint group.

	fallback (callable, optional) – A function of one argument. If node doesn’t have a constraint_group
attribute, this is used to group the node instead. Defaults to not
group the node at all.

oemof.solph.helpers

Private helper functions.

	
oemof.solph._helpers.check_node_object_for_missing_attribute(obj, attribute)

	Raises a predefined warning if object does not have attribute.

	Parameters

	
	obj (python object)

	attribute ((string) name of the attribute to test for)

	
oemof.solph._helpers.warn_if_missing_attribute(obj, attribute)

	Raises warning if attribute is missing for given object

oemof.solph.models

Solph Optimization Models.

	
class oemof.solph._models.BaseModel(energysystem, **kwargs)

	Bases: pyomo.core.base.PyomoModel.ConcreteModel

The BaseModel for other solph-models (Model, MultiPeriodModel, etc.)

	Parameters

	
	energysystem (EnergySystem object) – Object that holds the nodes of an oemof energy system graph

	constraint_groups (list (optional)) – Solph looks for these groups in the given energy system and uses them
to create the constraints of the optimization problem.
Defaults to Model.CONSTRAINTS

	objective_weighting (array like (optional)) – Weights used for temporal objective function
expressions. If nothing is passed timeincrement will be used which
is calculated from the freq length of the energy system timeindex or
can be directly passed as a sequence.

	auto_construct (boolean) – If this value is true, the set, variables, constraints, etc. are added,
automatically when instantiating the model. For sequential model
building process set this value to False
and use methods _add_parent_block_sets,
_add_parent_block_variables, _add_blocks, _add_objective

	Variables

	
	timeincrement (sequence) – Time increments.

	flows (dict) – Flows of the model.

	name (str) – Name of the model.

	es (solph.EnergySystem) – Energy system of the model.

	meta (pyomo.opt.results.results_.SolverResults or None) – Solver results.

	dual (pyomo.core.base.suffix.Suffix or None) – Store the dual variables of the model if pyomo suffix is set to IMPORT

	rc (pyomo.core.base.suffix.Suffix or None) – Store the reduced costs of the model if pyomo suffix is set to IMPORT

	
CONSTRAINT_GROUPS = []

	

	
receive_duals()

	Method sets solver suffix to extract information about dual
variables from solver. Shadow prices (duals) and reduced costs (rc) are
set as attributes of the model.

	
relax_problem()

	Relaxes integer variables to reals of optimization model self.

	
results()

	Returns a nested dictionary of the results of this optimization.
See the processing module for more information on results extraction.

	
solve(solver='cbc', solver_io='lp', **kwargs)

	Takes care of communication with solver to solve the model.

	Parameters

	
	solver (string) – solver to be used e.g. “cbc”, “glpk”,”gurobi”,”cplex”

	solver_io (string) – pyomo solver interface file format: “lp”,”python”,”nl”, etc.

	**kwargs (keyword arguments) – Possible keys can be set see below:

	Other Parameters

	
	solve_kwargs (dict) – Other arguments for the pyomo.opt.SolverFactory.solve() method
Example : {“tee”:True}

	cmdline_options (dict) – Dictionary with command line options for solver e.g.
{“mipgap”:”0.01”} results in “–mipgap 0.01”
{“interior”:” “} results in “–interior”
Gurobi solver takes numeric parameter values such as
{“method”: 2}

	
exception oemof.solph._models.LoggingError

	Bases: BaseException

Raised when the wrong logging level is used.

	
class oemof.solph._models.Model(energysystem, **kwargs)

	Bases: oemof.solph._models.BaseModel

An energy system model for operational and/or investment
optimization.

	Parameters

	
	energysystem (EnergySystem object) – Object that holds the nodes of an oemof energy system graph

	constraint_groups (list) – Solph looks for these groups in the given energy system and uses them
to create the constraints of the optimization problem.
Defaults to Model.CONSTRAINT_GROUPS

The following basic sets are created:

	NODES

	A set with all nodes of the given energy system.

	TIMESTEPS

	A set with all timesteps of the given time horizon.

	FLOWS

	A 2 dimensional set with all flows. Index: (source, target)

The following basic variables are created:

	flow

	Flow from source to target indexed by FLOWS, TIMESTEPS.
Note: Bounds of this variable are set depending on attributes of
the corresponding flow object.

	
CONSTRAINT_GROUPS = [<class 'oemof.solph.buses._bus.BusBlock'>, <class 'oemof.solph.components._transformer.TransformerBlock'>, <class 'oemof.solph.flows._investment_flow_block.InvestmentFlowBlock'>, <class 'oemof.solph.flows._simple_flow_block.SimpleFlowBlock'>, <class 'oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock'>, <class 'oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock'>]

	

oemof.solph.options

Optional classes to be added to a network class.

	
class oemof.solph._options.Investment(maximum=inf, minimum=0, ep_costs=0, existing=0, nonconvex=False, offset=0, custom_attributes=None)

	Bases: object

Defines an Investment object holding all the specifications needed
for investment modeling.

	Parameters

	
	maximum (float, \(P_{invest,max}\) or \(E_{invest,max}\)) – Maximum of the additional invested capacity

	minimum (float, \(P_{invest,min}\) or \(E_{invest,min}\)) – Minimum of the additional invested capacity. If nonconvex is True,
minimum defines the threshold for the invested capacity.

	ep_costs (float, \(c_{invest,var}\)) – Equivalent periodical costs for the investment per flow capacity.

	existing (float, \(P_{exist}\) or \(E_{exist}\)) – Existing / installed capacity. The invested capacity is added on top
of this value. Not applicable if nonconvex is set to True.

	nonconvex (bool) – If True, a binary variable for the status of the investment is
created. This enables additional fix investment costs (offset)
independent of the invested flow capacity. Therefore, use the offset
parameter.

	offset (float, \(c_{invest,fix}\)) – Additional fix investment costs. Only applicable if nonconvex is set
to True.

For the variables, constraints and parts of the objective function, which
are created, see
InvestmentFlow,
GenericInvestmentStorageBlock
SinkDSMOemofInvestmentBlock,
SinkDSMDLRInvestmentBlock and
SinkDSMDIWInvestmentBlock.

	
class oemof.solph._options.NonConvex(initial_status=0, minimum_uptime=0, minimum_downtime=0, maximum_startups=None, maximum_shutdowns=None, startup_costs=None, shutdown_costs=None, activity_costs=None, inactivity_costs=None, negative_gradient_limit=None, positive_gradient_limit=None, custom_attributes=None)

	Bases: object

Defines a NonConvex object holding all the specifications for NonConvex
Flows, i.e. Flows with binary variables associated to them.

	Parameters

	
	startup_costs (numeric (iterable or scalar)) – Costs associated with a start of the flow (representing a unit).

	shutdown_costs (numeric (iterable or scalar)) – Costs associated with the shutdown of the flow (representing a unit).

	activity_costs (numeric (iterable or scalar)) – Costs associated with the active operation of the flow, independently
from the actual output.

	inactivity_costs (numeric (iterable or scalar)) – Costs associated with not operating the flow.

	minimum_uptime (numeric (1 or positive integer)) – Minimum time that a flow must be greater then its minimum flow after
startup. Be aware that minimum up and downtimes can contradict each
other and may lead to infeasible problems.

	minimum_downtime (numeric (1 or positive integer)) – Minimum time a flow is forced to zero after shutting down.
Be aware that minimum up and downtimes can contradict each
other and may to infeasible problems.

	maximum_startups (numeric (0 or positive integer)) – Maximum number of start-ups in the optimization timeframe.

	maximum_shutdowns (numeric (0 or positive integer)) – Maximum number of shutdowns in the optimization timeframe.

	initial_status (numeric (0 or 1)) – Integer value indicating the status of the flow in the first time step
(0 = off, 1 = on). For minimum up and downtimes, the initial status
is set for the respective values in the edge regions e.g. if a
minimum uptime of four timesteps is defined, the initial status is
fixed for the four first and last timesteps of the optimization period.
If both, up and downtimes are defined, the initial status is set for
the maximum of both e.g. for six timesteps if a minimum downtime of
six timesteps is defined in addition to a four timestep minimum uptime.

	negative_gradient_limit (numeric (iterable, scalar or None)) – the normed upper bound on the positive difference
(flow[t-1] < flow[t]) of two consecutive flow values.

	positive_gradient_limit (numeric (iterable, scalar or None)) – the normed upper bound on the negative difference
(flow[t-1] > flow[t]) of two consecutive flow values.

	
max_up_down

	Return maximum of minimum_uptime and minimum_downtime.

The maximum of both is used to set the initial status for this
number of time steps within the edge regions.

oemof.solph.plumbing

Helpers to fit scalar values into sequences.

	
oemof.solph._plumbing.sequence(iterable_or_scalar)

	Tests if an object is iterable (except string) or scalar and returns
the original sequence if object is an iterable and an ‘emulated’
sequence object of class _Sequence if object is a scalar or string.

	Parameters

	iterable_or_scalar (iterable or None or int or float)

Examples

>>> sequence([1,2])
[1, 2]

>>> x = sequence(10)
>>> x[0]
10

>>> x[10]
10
>>> print(x)
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

oemof.solph.processing

Modules for providing a convenient data structure for solph results.

Information about the possible usage is provided within the examples.

	
oemof.solph.processing.convert_keys_to_strings(result, keep_none_type=False)

	Convert the dictionary keys to strings.

All (tuple) keys of the result object e.g. results[(pp1, bus1)] are
converted into strings that represent the object labels
e.g. results[(‘pp1’,’bus1’)].

	
oemof.solph.processing.create_dataframe(om)

	Create a result dataframe with all optimization data.

Results from Pyomo are written into pandas DataFrame where separate columns
are created for the variable index e.g. for tuples of the flows and
components or the timesteps.

	
oemof.solph.processing.divide_scalars_sequences(df_dict, k)

	Split results into scalars and sequences results

	Parameters

	
	df_dict (dict) – dict of pd.DataFrames, keyed by oemof tuples

	k (tuple) – oemof tuple for results processing

	
oemof.solph.processing.get_timestep(x)

	Get the timestep from oemof tuples.

The timestep from tuples (n, n, int), (n, n), (n, int) and (n,)
is fetched as the last element. For time-independent data (scalars)
zero ist returned.

	
oemof.solph.processing.get_tuple(x)

	Get oemof tuple within iterable or create it.

Tuples from Pyomo are of type (n, n, int), (n, n) and (n, int).
For single nodes n a tuple with one object (n,) is created.

	
oemof.solph.processing.meta_results(om, undefined=False)

	Fetch some metadata from the Solver. Feel free to add more keys.

Valid keys of the resulting dictionary are: ‘objective’, ‘problem’,
‘solver’.

	omoemof.solph.Model

	A solved Model.

	undefinedbool

	By default (False) only defined keys can be found in the dictionary.
Set to True to get also the undefined keys.

	Returns

	dict

	
oemof.solph.processing.parameter_as_dict(system, exclude_none=True, exclude_attrs=None)

	Create a result dictionary containing node parameters.

Results are written into a dictionary of pandas objects where
a Series holds all scalar values and a dataframe all sequences for nodes
and flows.
The dictionary is keyed by flows (n, n) and nodes (n, None), e.g.
parameter[(n, n)][‘sequences’] or parameter[(n, n)][‘scalars’].

	Parameters

	
	system (energy_system.EnergySystem) – A populated energy system.

	exclude_none (bool) – If True, all scalars and sequences containing None values are excluded

	exclude_attrs (Optional[List[str]]) – Optional list of additional attributes which shall be excluded from
parameter dict

	Returns

	dict (Parameters for all nodes and flows)

	
oemof.solph.processing.remove_timestep(x)

	Remove the timestep from oemof tuples.

The timestep is removed from tuples of type (n, n, int) and (n, int).

	
oemof.solph.processing.results(model, remove_last_time_point=False)

	Create a result dictionary from the result DataFrame.

Results from Pyomo are written into a dictionary of pandas objects where
a Series holds all scalar values and a dataframe all sequences for nodes
and flows.
The dictionary is keyed by the nodes e.g. results[idx][‘scalars’]
and flows e.g. results[n, n][‘sequences’].

	Parameters

	
	model (oemof.solph.BaseModel) – A solved oemof.solph model.

	remove_last_time_point (bool) – The last time point of all TIMEPOINT variables is removed to get the
same length as the TIMESTEP (interval) variables without getting
nan-values. By default, the last time point is removed if it has not
been defined by the user in the EnergySystem but inferred. If all
time points has been defined explicitly by the user the last time point
will not be removed by default. In that case all interval variables
will get one row with nan-values to have the same index for all
variables.

	
oemof.solph.processing.set_result_index(df_dict, k, result_index)

	Define index for results

	Parameters

	
	df_dict (dict) – dict of pd.DataFrames, keyed by oemof tuples

	k (tuple) – oemof tuple for results processing

	result_index (pd.Index) – Index to use for results

oemof.solph.views

Modules for providing convenient views for solph results.

See examples for to learn about the possible usage of the provided functions.

	
class oemof.solph.views.NodeOption

	Bases: str, enum.Enum

An enumeration.

	
All = 'all'

	

	
HasInputs = 'has_inputs'

	

	
HasOnlyInputs = 'has_only_inputs'

	

	
HasOnlyOutputs = 'has_only_outputs'

	

	
HasOutputs = 'has_outputs'

	

	
oemof.solph.views.convert_to_multiindex(group, index_names=None, droplevel=None)

	Convert dict to pandas DataFrame with multiindex

	Parameters

	
	group (dict) – Sequences of the oemof.solph.Model.results dictionary

	index_names (arraylike) – Array with names of the MultiIndex

	droplevel (arraylike) – List containing levels to be dropped from the dataframe

	
oemof.solph.views.filter_nodes(results, option=<NodeOption.All: 'all'>, exclude_busses=False)

	Get set of nodes from results-dict for given node option.

This function filters nodes from results for special needs. At the moment,
the following options are available:

	NodeOption.All: ‘all’: Returns all nodes

	
	NodeOption.HasOutputs: ‘has_outputs’:

	Returns nodes with an output flow (eg. Transformer, Source)

	
	NodeOption.HasInputs: ‘has_inputs’:

	Returns nodes with an input flow (eg. Transformer, Sink)

	
	NodeOption.HasOnlyOutputs: ‘has_only_outputs’:

	Returns nodes having only output flows (eg. Source)

	
	NodeOption.HasOnlyInputs: ‘has_only_inputs’:

	Returns nodes having only input flows (eg. Sink)

Additionally, busses can be excluded by setting exclude_busses to
True.

	Parameters

	
	results (dict)

	option (NodeOption)

	exclude_busses (bool) – If set, all bus nodes are excluded from the resulting node set.

	Returns

	set – A set of Nodes.

	
oemof.solph.views.get_node_by_name(results, *names)

	Searches results for nodes

Names are looked up in nodes from results and either returned single node
(in case only one name is given) or as list of nodes. If name is not found,
None is returned.

	
oemof.solph.views.net_storage_flow(results, node_type)

	Calculates the net storage flow for storage models that have one
input edge and one output edge both with flows within the domain of
non-negative reals.

	Parameters

	
	results (dict) – A result dictionary from a solved oemof.solph.Model object

	node_type (oemof.solph class) – Specifies the type for which (storage) type net flows are calculated,
e.g. solph.components.GenericStorage

	Returns

	
	pandas.DataFrame object with multiindex colums. Names of levels of columns

	are (from, to, net_flow.)

	
oemof.solph.views.node(results, node, multiindex=False, keep_none_type=False)

	Obtain results for a single node e.g. a Bus or Component.

Either a node or its label string can be passed.
Results are written into a dictionary which is keyed by ‘scalars’ and
‘sequences’ holding respective data in a pandas Series and DataFrame.

	
oemof.solph.views.node_input_by_type(results, node_type, droplevel=None)

	Gets all inputs for all nodes of the type node_type and returns
a dataframe.

	Parameters

	
	results (dict) – A result dictionary from a solved oemof.solph.Model object

	node_type (oemof.solph class) – Specifies the type of the node for that inputs are selected,
e.g. solph.components.Sink

	droplevel (list)

	
oemof.solph.views.node_output_by_type(results, node_type, droplevel=None)

	Gets all outputs for all nodes of the type node_type and returns
a dataframe.

	Parameters

	
	results (dict) – A result dictionary from a solved oemof.solph.Model object

	node_type (oemof.solph class) – Specifies the type of the node for that outputs are selected,
e.g. solph.components.Transformer

	droplevel (list)

	
oemof.solph.views.node_weight_by_type(results, node_type)

	Extracts node weights (if exist) of all components of the specified
node_type.

Node weight are endogenous optimzation variables associated with the node
and not the edge between two node, foxample the variable representing the
storage level.

	Parameters

	
	results (dict) – A result dictionary from a solved oemof.solph.Model object

	node_type (oemof.solph class) – Specifies the type for which node weights should be collected,
e.g. solph.components.GenericStorage

Examples

	Basic example
	General description

	Data

	Installation requirements

	License

	Basic Time Index
	General description

	Installation requirements

	License

	Activity costs
	General description

	Installation requirements

	License

	Balanced and unbalanced storage
	General description

	Installation requirements

	License

	Electrical
	Linear optimal power flow (lopf)
	General description

	Installation requirements

	License

	Transshipment
	General description:

	Installation requirements

	License

	Emission constraint
	General description

	Installation requirements

	License

	Flexible modelling
	Add constraints
	General description

	Installation requirements

	License

	Flow count limit
	General description

	Installation requirements

	License

	Flow gradient
	General description

	Installation requirements

	License

	Generic Invest limit
	Installation requirements

	License

	Investment with minimal invest
	Installation requirements

	License

	Minimal and maximal runtime
	General description

	Installation requirements

	License

	Simple heat and power dispatch
	General description

	Data

	Installation requirements

	License

	Spreadsheet (Excel) Reader
	General description

	Data

	Installation requirements

	License

	Start and shutdown costs
	General description

	Installation requirements

	License

	Storage investment
	Optimize all technologies
	General description

	Data

	Installation requirements

	License

	Optimize only gas and storage
	General description

	Installation requirements

	License

	Optimize only storage with fossil share
	General description

	Installation requirements

	License

	Optimize all technologies with fossil share
	General description

	Installation requirements

	License

	Tuple as label
	General description

	Data

	Installation requirements

	License

	Variable CHP
	General description

	Installation requirements

	License

Basic example

General description

A basic example to show how to model a simple energy system with oemof.solph.

The following energy system is modeled:

 input/output bgas bel
 | | |
 | | |
wind(FixedSource) |------------------>|
 | | |
pv(FixedSource) |------------------>|
 | | |
rgas(Commodity) |--------->| |
 | | |
demand(Sink) |<------------------|
 | | |
 | | |
pp_gas(Transformer) |<---------| |
 |------------------>|
 | | |
storage(Storage) |<------------------|
 |------------------>|

Data

basic_example.csv

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Basic Time Index

General description

A minimal example to show how time steps work.

	Flows are defined in time intervals, storage content at points in time.
Thus, there is one more value for storage contents then for the
flow values.

	Time intervals are named by the time at the beginning of that interval.
The quantity changes to the given value at the given point in time.

	The initial_storage_level of a GenericStorage is given
at the first time step. If the storage is balanced,
this is the same storage level as in the last time step.

	The nominal_value in Flows has to be interpreted in means of power:
We have nominal_value=0.5, but the maximum change of the storage content
of an ideal storage is 0.125.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Activity costs

General description

This example illustrates the effect of activity_costs.

There are the following components:

	demand_heat: heat demand (constant, for the sake of simplicity)

	fireplace: wood firing, burns “for free” if somebody is around

	boiler: gas firing, consumes (paid) gas

Notice that activity_costs is an attribute to NonConvex.
This is because it relies on the activity status of a component
which is only available for nonconvex flows.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Balanced and unbalanced storage

General description

Example that shows the parameter balanced of GenericStorage.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Electrical

Linear optimal power flow (lopf)

General description

This script shows how to do a linear optimal powerflow (lopf) calculation
based on custom oemof components. The example is based on the PyPSA
simple lopf example.

Note: As oemof currently does not support models with one timesteps, therefore
there are two.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

To draw the graph pygraphviz is required, installed by:

pip install pygraphviz

License

Simon Hilpert - 12.12.2017 - simon.hilpert@uni-flensburg.de

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Transshipment

General description:

This script shows how use the custom component solph.custom.Link to build
a simple transshipment model.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

To draw the graph pygraphviz is required, installed by:

pip install pygraphviz

License

Simon Hilpert - 12.12.2017 - simon.hilpert@uni-flensburg.de

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Emission constraint

General description

Example that shows how to add an emission constraint in a model.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Flexible modelling

Add constraints

General description

This script shows how to add an individual constraint to the oemof solph
OperationalModel.
The constraint we add forces a flow to be greater or equal a certain share
of all inflows of its target bus. Moreover we will set an emission constraint.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

To draw the graph pygraphviz is required, installed by:

pip install pygraphviz

License

Simon Hilpert - 31.10.2016 - simon.hilpert@uni-flensburg.de

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Flow count limit

General description

Something…

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Flow gradient

General description

The gradient constraint can restrict a component to change the output within
one time step. In this example a storage will buffer this restriction, so the
more flexible the power plant can be run the less the storage will be used.

Change the GRADIENT variable in the example to see the effect on the usage of
the storage.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Generic Invest limit

Example that shows how to use “Generic Investment Limit”.

There are two supply chains. The energy systems looks like that:

 bus_a_0 bus_a_1
 | |
source_a_0 --->|---> trafo_a --->|--->demand_a
 |
 source_a_1--->|
 |

 bus_b_0 bus_b_1
 | |
source_b_0 --->|---> trafo_b --->|--->demand_b
 |
 source_b_1--->|
 |

Everything is identical - the costs for the sources, the demand, the efficiency
of the Transformer. And both Transformer have an investment at the output.
The source ‘*_1’ is in both cases very expensive, so that
a investment is probably done in the transformer.
Now, both investments share a third resource, which is called “space” in this
example. (This could be anything, and you could use as many additional
resources as you want.) And this resource is limited. In this case, every
Transformer capacity unit, which might be installed, needs 2 space for
‘trafo a’, and 1 space per installed capacity for ‘trafo b’.
And the total space is limited to 24.
See what happens, have fun ;)

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

Johannes Röder <johannes.roeder@uni-bremen.de>

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Investment with minimal invest

Example that shows how to use “Offset-Invest”.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

Johannes Röder <https://www.uni-bremen.de/en/res/team/johannes-roeder-m-sc>

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Minimal and maximal runtime

General description

Example that illustrates how to model min and max runtimes.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Simple heat and power dispatch

General description

This example shows how to create an energysystem with oemof objects and
solve it with the solph module. Results are plotted with solph.

Dispatch modelling is a typical thing to do with solph. However cost does not
have to be monetary but can be emissions etc. In this example a least cost
dispatch of different generators that meet an inelastic demand is undertaken.
Some of the generators are renewable energies with marginal costs of zero.
Additionally, it shows how combined heat and power units may be easily modelled
as well.

Data

input_data.csv

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Spreadsheet (Excel) Reader

General description

As the csv-reader was removed with version 0.2 this example shows how to create
an excel-reader. The example is equivalent to the old csv-reader example.
Following the example one can customise the excel reader to ones own needs.

The pandas package supports the ‘.xls’ and the ‘.xlsx’ format but one can
create read and adept the files with open source software such as libreoffice,
openoffice, gnumeric,…

Data

scenario.xlsx

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

pip3 install openpyxl

If you want to plot the energy system’s graph, you have to install pygraphviz
using:

pip3 install pygraphviz

For pygraphviz under Windows, some hints are available in the oemof Wiki:
https://github.com/oemof/oemof/wiki/Windows—general [https://github.com/oemof/oemof/wiki/Windows---general]

License

Uwe Krien <uvchik.git@posteo.eu>
Jonathan Amme <jonathan.amme@rl-institut.de>

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Start and shutdown costs

General description

Example that illustrates how to model startup and shutdown costs attributed
to a binary flow.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Storage investment

Optimize all technologies

General description

This example shows how to perform a capacity optimization for
an energy system with storage. The following energy system is modeled:

 input/output bgas bel
 | | |
 | | |
wind(FixedSource) |------------------>|
 | | |
pv(FixedSource) |------------------>|
 | | |
gas_resource |--------->| |
(Commodity) | | |
 | | |
demand(Sink) |<------------------|
 | | |
 | | |
pp_gas(Transformer) |<---------| |
 |------------------>|
 | | |
storage(Storage) |<------------------|
 |------------------>|

The example exists in four variations. The following parameters describe
the main setting for the optimization variation 1:

	optimize wind, pv, gas_resource and storage

	set investment cost for wind, pv and storage

	set gas price for kWh

Results show an installation of wind and the use of the gas resource.
A renewable energy share of 51% is achieved.

Have a look at different parameter settings. There are four variations
of this example in the same folder.

Data

storage_investment.csv

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Optimize only gas and storage

General description

This example shows how to perform a capacity optimization for
an energy system with storage. The following energy system is modeled:

 input/output bgas bel
 | | |
 | | |
wind(FixedSource) |------------------>|
 | | |
pv(FixedSource) |------------------>|
 | | |
gas_resource |--------->| |
(Commodity) | | |
 | | |
demand(Sink) |<------------------|
 | | |
 | | |
pp_gas(Transformer) |<---------| |
 |------------------>|
 | | |
storage(Storage) |<------------------|
 |------------------>|

The example exists in four variations. The following parameters describe
the main setting for the optimization variation 2:

	optimize gas_resource and storage

	set installed capacities for wind and pv

	set investment cost for storage

	set gas price for kWh

Results show a higher renewable energy share than in variation 1
(78% compared to 51%) due to preinstalled renewable capacities.
Storage is not installed as the gas resource is cheaper.

Have a look at different parameter settings. There are four variations
of this example in the same folder.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Optimize only storage with fossil share

General description

This example shows how to perform a capacity optimization for
an energy system with storage. The following energy system is modeled:

 input/output bgas bel
 | | |
 | | |
wind(FixedSource) |------------------>|
 | | |
pv(FixedSource) |------------------>|
 | | |
gas_resource |--------->| |
(Commodity) | | |
 | | |
demand(Sink) |<------------------|
 | | |
 | | |
pp_gas(Transformer) |<---------| |
 |------------------>|
 | | |
storage(Storage) |<------------------|
 |------------------>|

The example exists in four variations. The following parameters describe
the main setting for the optimization variation 3:

	calculate storage

	set installed capacities for wind and pv

	set investment cost for storage

	remove the gas price and set a fossil share

	now it becomes a calculation of storage capacity (no cost optimization)

Results show now the installation of storage because a higher
renewable share than achieved in variation 2 is now required
(80% compared to 78%).

Have a look at different parameter settings. There are four variations
of this example in the same folder.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Optimize all technologies with fossil share

General description

This example shows how to perform a capacity optimization for
an energy system with storage. The following energy system is modeled:

 input/output bgas bel
 | | |
 | | |
wind(FixedSource) |------------------>|
 | | |
pv(FixedSource) |------------------>|
 | | |
gas_resource |--------->| |
(Commodity) | | |
 | | |
demand(Sink) |<------------------|
 | | |
 | | |
pp_gas(Transformer) |<---------| |
 |------------------>|
 | | |
storage(Storage) |<------------------|
 |------------------>|

The example exists in four variations. The following parameters describe
the main setting for the optimization variation 4:

	optimize wind, pv, and storage

	set investment cost for wind, pv and storage

	set a fossil share

Results show now the achievement of 80% renewable energy share
by solely installing a little more wind and pv (compared to
variation 2). Storage is not installed.

Have a look at different parameter settings. There are four variations
of this example in the same folder.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Tuple as label

General description

You should have grasped the basic_example to understand this one.

This is an example to show how the label attribute can be used with tuples to
manage the results of large energy system. Even though, the feature is
introduced in a small example it is made for large system.

In small energy system you normally address the node, you want your results
from, directly. In large systems you may want to group your results and collect
all power plants of a specific region or pv feed-in of all regions.

Therefore you can use named tuples as label. In a named tuple you need to
specify the fields:

>>> label = namedtuple('solph_label', ['region', 'tag1', 'tag2'])

>>> pv_label = label('region_1', 'renewable_source', 'pv')
>>> pp_gas_label = label('region_2', 'power_plant', 'natural_gas')
>>> demand_label = label('region_3', 'electricity', 'demand')

You always have to address all fields but you can use empty strings or None as
place holders.

>>> elec_bus = label('region_4', 'electricity', '')
>>> print(elec_bus)
solph_label(region='region_4', tag1='electricity', tag2='')

>>> elec_bus = label('region_4', 'electricity', None)
>>> print(elec_bus)
solph_label(region='region_4', tag1='electricity', tag2=None)

Now you can filter the results using the label or the instance:

>>> for key, value in results.items(): # Loop results (keys are tuples!)
... if isinstance(key[0], comp.Sink) & (key[0].label.tag2 == 'demand'):
... print("elec demand {0}: {1}".format(key[0].label.region,
... value['sequences'].sum()))

elec demand region_1: 3456
elec demand region_2: 2467
…

In the example below a subclass is created to define ones own string output.
By default the output of a namedtuple is field1=value1, field2=value2,…:

>>> print(str(pv_label))
solph_label(region='region_1', tag1='renewable_source', tag2='pv')

With the subclass we created below the output is different, because we defined
our own string representation:

>>> new_pv_label = Label('region_1', 'renewable_source', 'pv')
>>> print(str(new_pv_label))
region_1_renewable_source_pv

You still will be able to get the original string using repr:

>>> print(repr(new_pv_label))
Label(tag1='region_1', tag2='renewable_source', tag3='pv')

This a helpful adaption for automatic plots etc..

Afterwards you can use format to define your own custom string.:
>>> print(‘{0}+{1}-{2}’.format(pv_label.region, pv_label.tag2, pv_label.tag1))
region_1+pv-renewable_source

Data

basic_example.csv

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Variable CHP

General description

This example is not a real use case of an energy system but an example to show
how a combined heat and power plant (chp) with an extraction turbine works in
contrast to a chp (eg. block device) with a fixed heat fraction. Both chp
plants distribute power and heat to a separate heat and power Bus with a heat
and power demand. The i/o balance plot shows that the fixed chp plant produces
heat and power excess and therefore needs more natural gas. The bar plot just
shows the difference in the usage of natural gas.

Installation requirements

This example requires oemof.solph (v0.5.x), install by:

pip install oemof.solph[examples]

Optional to see the i/o balance plot:

pip install git+https://github.com/oemof/oemof_visio.git

License

MIT license [https://github.com/oemof/oemof-solph/blob/dev/LICENSE]

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/oemof/oemof-solph/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

oemof-solph could always use more documentation, whether as part of the
official oemof-solph docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/oemof/oemof-solph/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up oemof-solph for local development:

	Fork oemof-solph [https://github.com/oemof/oemof-solph]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:oemof/oemof-solph.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.wiki/en/latest/installation.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst and CITATION.cff.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/oemof/oemof-solph/pull_requests] for each change you add in the pull request.

It will be slower though …

Tests

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Tips

To run only parts of the testing pipeline (e.g. documentation, stylcheck,
specific python version):

tox -e envname

Available standard environments are:

clean
check
docs
py37
py38
py39

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

–alphabetic order–

(see full list on github [https://github.com/oemof/oemof-solph/graphs/contributors])

	Birgit Schachler

	Brian Michael Lancien

	Caroline Möller

	Caterina Köhl

	Clemens Wingenbach

	Cord Kaldemeyer

	Daniel Rank

	David Fuhrländer

	Ekaterina Zolotarevskaya

	Elisa Gaudchau

	Elisa Papadis

	Fabian Büllesbach

	Francesco Witte

	Guido Plessmann

	Hendrik Hyskens

	Jakob Wolf

	Jann Launer

	Jens-Olaf Delfs

	Johannes Kochems

	Johannes Röder

	Jonathan Amme

	Julian Endres

	Lluis Millet

	Martin Soethe

	Patrik Schönfeldt

	Pierre-François Duc

	Saeed Sayadi

	Sarah Berendes

	Simon Hilpert

	Stephan Günther

	Uwe Krien

Changelog

These are new features and improvements of note in each release

Releases

	v0.4.5 (January 23th, 2023)

	v0.4.4 (June 1st, 2021)

	v0.4.2 (May, 11, 2021)

	v0.4.1 (June 24, 2020)

	v0.4.0 (June 6, 2020)

	v0.3.2 (November 29, 2019)

	v0.3.1 (June 11, 2019)

	v0.3.0 (June 5, 2019)

	v0.2.3 (November 21, 2018)

	v0.2.2 (July 1, 2018)

	v0.2.1 (March 19, 2018)

	v0.2.0 (January 12, 2018)

	v0.1.4 (March 28, 2017)

	v0.1.2 (March 27, 2017)

	v0.1.1 (November 2, 2016)

	v0.1.0 (November 1, 2016)

	v0.0.7 (May 4, 2016)

	v0.0.6 (April 29, 2016)

	v0.0.5 (April 1, 2016)

	v0.0.4 (March 03, 2016)

	v0.0.3 (January 29, 2016)

	v0.0.2 (December 22, 2015)

	v0.0.1 (November 25, 2015)

v0.4.5 (January 23th, 2023)

New features

	Allow to exclude attrs from parameter_as_dict
#825 [https://github.com/oemof/oemof-solph/pull/825]

Bug fixes

	Remove not working gradient_cost from Flow

	Exclude attrs from parameter_as_dict #824 [https://github.com/oemof/oemof-solph/pull/824]

	Fixed check for callables in processing.parameter_as_dict #823 [https://github.com/oemof/oemof-solph/pull/823]

	Refactored assertion error in Link component into suspicious warning #834 [https://github.com/oemof/oemof-solph/pull/834]

	Remove Link limit direction #896 [https://github.com/oemof/oemof-solph/pull/896]

	Fix links in setup.py #803 [https://github.com/oemof/oemof-solph/pull/803]

Testing

	Node.registry has been removed from oemof.network. All nodes have to be
added to the energysystem explicitely. The tests have been adapted.

Contributors

	Hendrik Huyskens

	Uwe Krien

	Jann Launer

	Patrik Schönfeld

	Francesco Witte

v0.4.4 (June 1st, 2021)

API changes

	Allow conversion factor of zero for GenericTransformer

	Python 3.6 is no longer officially supported. It may still work for a while though.

New components/constraints

	Custom component: oemof.solph.custom.PiecewiseLinearTransformer. A transformer model with one input and one output and an arbitrary piecewise linear conversion function. On how to use the component, refer to the test script [https://github.com/oemof/oemof-solph/blob/dev/tests/test_scripts/test_solph/test_piecewiselineartransformer/test_piecewiselineartransformer.py] and example [https://github.com/oemof/oemof-examples/blob/master/oemof_examples/oemof.solph/v0.4.x/piecewise/piecewise_linear_transformer.py].

	
	Enhanced custom SinkDSM:

	
	Renamed keyword argument method to approach

	Renamed approaches interval to oemof and delay to DIW

	Added modeling approach DLR (PhD thesis of Hans Christian Gils 2015)

	Included load shedding

	Introduced recovery_time in DIW approach

	Introduced shift_time and other parameters for DLR approach

	Included investments in DSM

	Normalized keyword arguments demand, capapcity_up and capacity_down

Bug fixes

	Check number of Flow s in GenericStorage

Other changes

	Split code into submodules

	Move CI-Tests from Travis to github (see PR #746 [https://github.com/oemof/oemof-solph/pull/746])

Contributors

	Jann Launer

	Johannes Kochems

	Patrik Schönfeldt

	Stefan Schirmeister

	Uwe Krien

v0.4.2 (May, 11, 2021)

	Exclude Pyomo version 5.7.3, because this version causes an unusual high computing time to create a model.

v0.4.1 (June 24, 2020)

Bug fixes

	Fixed incompatibility with recent Pyomo release (5.7)

Known issues

	
	Results of one-time-step optimisation counterintuitive

	If an optimisation with one time-step is performed, at the processing of the
results, the scalars of the results is stored in the dict of the sequences.
(See Issue #693 [https://github.com/oemof/oemof-solph/issues/693])

Contributors

	Uwe Krien

	Patrik Schönfeldt

v0.4.0 (June 6, 2020)

API changes

	
	New package name

	For installation via pypi use pip install oemof.solph.

	
	Change the import of oemof-solph due to unbundling oemof solph

	The import statements have changed, for example
from outputlib.views import processing –> from oemof.solph import processing.
There are further changes for the modules views, helpers, economics,
logger, network.

	
	Rename GenericStorage attributes

	The attribute capacity of the GenericStorage describing the current
absolute stored energy/material/water etc. has been renamed to storage_content.
In the GenericStorageBlock and GenericInvestmentStorageBlock,
the attribute init_cap has been renamed init_content. This change is
intended to avoid confusion with nominal_storage_capacity or capacity in terms
of installed capacity.

	Rename the flow attribute ``actual_value`` to ``fix`` and remove ``fixed``

New features

	
	Allows having a non equidistant timeindex

	By adding the calculate_timeincrement function to tools/helpers.py a non
equidistant timeincrement can be calculated. The EnergySystem
will now be defined by the timeindex and the calculated
timeincrement.

	
	Allows non-convex investments for flows and storages.

	With this feature, fix investment costs, which do not dependent on the
nominal capacity, can be considered.

	
	Add user warnings for debugging.

	A UserWarning is raised for untypical uses even though this kind of
usage is valid if you really know what you are doing.
This will help users to debug their code but can be turned of for
experienced users.

	
	Add fixed losses to GenericStorage

	~oemof.solph.components.GenericStorage can now have fixed_losses,
that are independent from storage content.

New components/constraints

	
	Allows a generic limit for attribute weighted investment flows

	InvestmentFlow, which share other limited resources (e.g. space), can be
considered.

	
	Allow to limit count of concurrently active flows in group of flows

	Flows have to be NonConvex, the limit can be an upper or lower one.

	
	New constraint shared_limit

	Shared limit allows to restrict the weighted sum
of arbitrary variables to a corridor.
This can be used, e.g. to model shared space is used to store wood pallets
and logs with their respective energy density.

Documentation

	Restructure and clean-up documentation due to the unbundling

	Improved documentation of ExtractionTurbineCHP

Known issues

	
	Results of one-time-step optimisation counterintuitive

	If an optimisation with one time-step is performed, at the processing of the
results, the scalars of the results is stored in the dict of the sequences.
(See Issue #693 [https://github.com/oemof/oemof-solph/issues/693])

Testing

	
	Use tox for testing

	Now, pep8 tests and build of documentation are tested.

	Skip github link checks when testing locally

Other changes

	
	Redefine loss_rate of GenericStorage

	The loss_rate of ~oemof.solph.components.GenericStorage
is now defined per time increment.

	
	Change parameters’ data type in the docstrings

	The parameters’ data type is changed from
numeric (sequence or scalar) to numeric (iterable or scalar)
(Issue #673 [https://github.com/oemof/oemof-solph/issues/673]).

	Add python 3.8 support, remove python 3.5 support

Contributors

	Caterina Köhl

	Jonathan Amme

	Uwe Krien

	Johannes Röder

	Jann Launer

	Daniel Rank

	Patrik Schönfeldt

	Stephan Günther

v0.3.2 (November 29, 2019)

New features

	Allow generic limits for integral over weighted flows.
(This is a generalised version of <solph.constraints.emission_limit>.)

	Allow time-dependent weights for integrated weighted limit.

New components

	Custom component: ~oemof.solph.custom.SinkDSM.
Demand Side Management component that allows to represent flexibile demand.
How the component is used is shown in SinkDSM (experimental).

Documentation

	Revision of the outputlib documentation [https://oemof-solph.readthedocs.io/en/v0.3.2/oemof_outputlib.html].

Other changes

	The license hase been changed from GPLv3 to the MIT license

	The BaseModel has been revised (test, docstring, warnings, internal naming)
(PR #605 [https://github.com/oemof/oemof-solph/pull/605])

	Style revision to meet pep8 and other pep rules.

Contributors

	Guido Plessmann

	Johannes Röder

	Julian Endres

	Patrik Schönfeldt

	Uwe Krien

v0.3.1 (June 11, 2019)

Other changes

	The API of the GenericStorage changed. Due to the open structure of solph
the old parameters are still accepted. Therefore users may not notice that
the default value is used instead of the given value after an update from
v0.2.x to v0.3.x. With this version an error is raised. We work on a
structure to avoid such problems in the future.

Contributors

	Patrik Schönfeldt

	Stephan Günther

	Uwe Krien

v0.3.0 (June 5, 2019)

API changes

	The param_results function does not exist anymore. It has been renamed to
parameter_as_dict (Issue #537 [https://github.com/oemof/oemof-solph/pull/537]).

	The storage API has been revised. Please check the
API documentation [https://oemof-solph.readthedocs.io/en/latest/usage.html#genericstorage-component] for all details.

	The OffsetTransformer is now a regular oemof.solph component. It has been
tested and the documentation has been improved. So it has been move from
custom to components. Use oemof.solph.components.OffsetTransformer (
Issue #522 [https://github.com/oemof/oemof-solph/pull/522]).

New features

	Now it is possible to model just one time step. This is important for time
step based models and all other models with an outer loop
(Issue #519 [https://github.com/oemof/oemof-solph/pull/519]).

	The storage can be used unbalanced now, which means that the level at the end
could be different to the level at the beginning of the modeled time period.
See the storage documentation [https://oemof-solph.readthedocs.io/en/latest/usage.html#genericstorage-component] for more details.

	NonConvexFlow <oemof.solph.blocks.NonConvexFlow> can now have
activity_costs, maximum_startups, and maximum_shutdowns.
This helps, to model e.g. terms of maintannace contracts for small CHP plants.

	Namedtuples and tuples as labels work now without problems. This makes it
much easier to find objects and results in large energy systems
(Issue #507 [https://github.com/oemof/oemof-solph/pull/507]).

	Groups are now fully lazy. This means that groups are only computed
when they are accessed. Previously, whenever nodes where added to an
energy system, groups where computed for all but the most recently
added node. This node was then only grouped upon addition of another
node or upon access of the groups property.

	There is now an explicit Edge <oemof.network.Edge> class. This means
that an energy system now consists of Buses <oemof.network.Bus>,
Components <oemof.network.Component> and Edges <oemof.network.Edge>.
For implementation reasons, Edges <oemof.network.Edge> are still
Nodes <oemof.network.Node>. If you know a bit of graph theory and
this seems strange to you, think of these Edges <oemof.network.Edge>
as classical graph theoretic edges, reified as nodes with an in- and
outdegree of one.

	Energy systems <oemof.energy_system.EnergySystem> now support blinker [https://blinker.readthedocs.io/]
signals. The first supported signal gets emitted, whenever a node
<oemof.network.node> is added <oemof.energy_system.EnergySystem.add> to an
energy system <oemof.energy_system.EnergySystem>.
(blinker [https://blinker.readthedocs.io/])

Documentation

	The template for docstrings with equations (docstring of block classes) has
been improved.

	A lot of improvements on the documentation

Bug fixes

	The timeincrement attribute of the model is not set to one anymore.
In earlier versions the timeincrement was set to one by default. This was a
problem if a wrong time index was passed. In that case the timeincrement
was set to one without a warning. Now an error is raised if no
timeincrement or valid time index is found
(Issue #549 [https://github.com/oemof/oemof-solph/pull/549]).

Testing

	Automatic test coverage control was implemented. Now a PR will not be
accepted if it decreases the test coverage.

	Test coverage was increased to over 90%. A badge was added to the
oemof github page [https://github.com/oemof/oemof] that shows the
actual test coverage.

	Test coverage on the groupings <oemof.groupings> and network
<oemof.network> modules has significantly increased. These modules where
historically very weakly tested and are now approaching 90% and 95%
respectively with more tests being planned.

Contributors

(alphabetical order)

	ajimenezUCLA

	FranziPl

	Johannes Röder

	Jakob Wolf

	Jann Launer

	Lluis Millet

	Patrik Schönfeldt

	Simon Hilpert

	Stephan Günther

	Uwe Krien

v0.2.3 (November 21, 2018)

Bug fixes

	Some functions did not work with tuples as labels. It has been fixed for the ExtractionTurbineCHP, the graph module and the parameter_as_dict function. (Issue #507 [https://github.com/oemof/oemof-solph/pull/507])

Contributors

	Simon Hilpert

	Stephan Günther

	Uwe Krien

v0.2.2 (July 1, 2018)

API changes

	The storage API has been revised, even though it is still possible to use the
old API. In that case a warning is raised
(Issue #491 [https://github.com/oemof/oemof-solph/pull/491]).

	The newly introduced parm_results are not results and therefore renamed to
parameter_as_dict. The old name is still valid but raises a warning.

New features

	We added a new attribute existing to the solph.options.Investement class.
It will now be possible to run investment optimization based on already
installed capacity of a component.
Take a look on Investment optimisation for usage of this option.
(Issue #489 [https://github.com/oemof/oemof-solph/pull/489]).

	Investement variables for the capacity and the flows are now decoupled to
enable more flexibility. It is possible to couple the flows to the capacity,
the flows to itself or to not couple anything. The newly added attributes
invest_relation_input_output, invest_relation_input_capacity and
invest_relation_output_capacity replace the existing attributes
nominal_input_capacity_ratio and nominal_input_capacity_ratio for the
investment mode. In case of the dispatch mode one should use the
nominal_value of the Flow classes. The attributes
nominal_input_capacity_ratio and nominal_input_capacity_ratio will be
removed in v0.3.0. Please adapt your application to avoid problems in the
future (Issue #480 [https://github.com/oemof/oemof-solph/pull/480]).

	We now have experimental support for deserializing an energy system from a
tabular data package [https://specs.frictionlessdata.io/data-package/]. Since
we have to extend the datapackage format a bit, the specification is not yet
finalized and documentation as well as tests range from sparse to
nonexistent. But anyone who wishes to help with the code is welcome to check
it out in the datapackage <oemof.tools.datapackage> module.

New components

Documentation

	The documentation of the storage
storage component [https://oemof-solph.readthedocs.io/en/latest/usage.html#genericstorage-component] has been improved.

	The documentation of the
Extraction Turbine [https://oemof-solph.readthedocs.io/en/latest/usage.html#extractionturbinechp-component] has been improved.

Known issues

	It is not possible to model one time step with oemof.solph. You have to
model at least two timesteps (Issue #306 [https://github.com/oemof/oemof-solph/issues/306]). Please leave a comment if this bug affects you.

Bug fixes

	Fix file extension check to dump a graph correctly as .graphml-file

	The full constraint set of the ExtractionTurbineCHP class was only build for
one object. If more than one object was present the input/output constraint
was missing. This lead to wrong results.

	In the solph constraints module the emission constraint did not include the
timeincrement from the model which has now be fixed.

	The parameter_as_dict (former: param_results) do work with the views
functions now (Issue #494 [https://github.com/oemof/oemof-solph/pull/494]).

Testing

	The test coverage has been increased (>80%). oemof has experimental areas to
test new functions. These functions are marked as experimental and will not
be tested. Therefore the real coverage is even higher.

Other changes

	Subclasses of Node <oemof.network.Node> are no longer optimized
using __slots__ [https://docs.python.org/3/reference/datamodel.html#slots].
The abstract parent class still defines __slots__
<oemof.network.Node.__slots__> so that custom subclasses still have the
option of using it.

Contributors

	Fabian Büllesbach

	Guido Plessmann

	Simon Hilpert

	Stephan Günther

	Uwe Krien

v0.2.1 (March 19, 2018)

API changes

	The function create_nx_graph only takes an energysystem as argument,
not a solph model. As it is not a major release you can still pass
a Model but you should adapt your application as soon as possible.
(Issue #439 [https://github.com/oemof/oemof-solph/pull/439])

New features

	It is now possible determine minimum up and downtimes for nonconvex flows.
Check the oemof_examples [https://github.com/oemof/oemof-examples]
repository for an exemplary usage.

	Startup and shutdown costs can now be defined time-dependent.

	The graph module has been revised.
(Issue #439 [https://github.com/oemof/oemof-solph/pull/439])

	You can now store a graph to disc as .graphml file to open it in yEd
with labels.

	You can add weight to edges.

	Labels are attached to the nodes.

	Two functions get_node_by_name and filter_nodes have been added that
allow to get specified nodes or nodes of one kind from the results
dictionary. (Issue #426 [https://github.com/oemof/oemof-solph/pull/426])

	A new function param_results() collects all parameters of nodes and flows
in a dictionary similar to the results dictionary.
(Issue #445 [https://github.com/oemof/oemof-solph/pull/445])

	In outputlib.views.node(), an option for multiindex dataframe has been added.

Documentation

	Some small fixes and corrected typos.

Known issues

	It is not possible to model one time step with oemof.solph. You have to
model at least two timesteps
(Issue #306 [https://github.com/oemof/oemof-solph/issues/306]). Please leave a
comment if this bug affects you.

Bug fixes

	Shutdown costs for nonconvex flows are now accounted within the objective
which was not the case before due to a naming error.

	Console script oemof_test_installation has been fixed.
(Issue #452 [https://github.com/oemof/oemof-solph/pull/452])

	Adapt solph to API change in the Pyomo package.

	Deserializing a Node <oemof.network.Node> leads to an object which
was no longer serializable. This is fixed now. Node
<oemof.network.Node> instances should be able to be dumped and restored an
arbitraty amount of times.

	Adding timesteps to index of constraint for component el-line
fixes an issue with pyomo.

Testing

	New console script test_oemof has been added (experimental).
(Issue #453 [https://github.com/oemof/oemof-solph/pull/453])

Other changes

	Internal change: Unnecessary list extensions while creating a model are
avoided, which leads to a decrease in runtime.
(Issue #438 [https://github.com/oemof/oemof-solph/pull/438])

	The negative/positive gradient attributes are dictionaries. In the
constructor they moved from sequences to a new dictionaries argument.
(Issue #437 [https://github.com/oemof/oemof-solph/pull/437])

	License agreement was adapted according to the reuse project
(Issue #442 [https://github.com/oemof/oemof-solph/pull/442])

	Code of conduct was added.
(Issue #440 [https://github.com/oemof/oemof-solph/pull/440])

	Version of required packages is now limited to the most actual version
(Issue #464 [https://github.com/oemof/oemof-solph/issues/464])

Contributors

	Cord Kaldemeyer

	Jann Launer

	Simon Hilpert

	Stephan Günther

	Uwe Krien

v0.2.0 (January 12, 2018)

API changes

	The NodesFromCSV has been removed from the code base. An alternative excel
(spreadsheet) reader is provided in the newly created
excel example in the oemof_examples [https://github.com/oemof/oemof-examples/tree/master/oemof_examples/oemof.solph/v0.2.x/excel_reader]
repository.

	LinearTransformer and LinearN1Transformer classes are now combined within one
Transformer class. The new class has n inputs and n outputs. Please note that
the definition of the conversion factors (for N1) has changed. See the new
docstring of ~oemof.solph.network.Transformer class to avoid errors
(Issue #351 [https://github.com/oemof/oemof-solph/pull/351]).

	The oemof.solph.network.Storage class has been renamed and moved to
oemof.solph.components.GenericStorage.

	As the example section has been moved to a new repository the oemof_example
command was removed. Use oemof_installation_test to check your installation
and the installed solvers.

	OperationalModel has been renamed to Model. The es parameter was
renamed to energysystem parameter.

	Nodes <oemof.network.Node> are no longer automatically added to the
most recently created energy system
<oemof.energy_system.EnergySystem>. You can still restore the old automatic
registration by manually assigning an energy system
<oemof.energy_system.EnergySystem> to Node.registry
<oemof.network.Node.registry>. On the other hand you can still explicitly
add <oemof.energy_system.EnergySystem.add> nodes
<oemof.network.Node> to an energy system
<oemof.energy_system.EnergySystem>. This option has been made a bit more
feature rich by the way, but see below for more on this.
Also check the
oemof_examples [https://github.com/oemof/oemof-examples] repository
for more information on the usage.

	The fixed_costs attribute of the nodes <oemof.solph.network.Flow>
has been removed. See
(Issue #407 [https://github.com/oemof/oemof-solph/pull/407]) for more
information.

	The classes DataFramePlot <outputlib.DataFramePlot> and
ResultsDataFrame <outputlib.ResultsDataFrame> have been removed
due to the redesign of the outputlib module.

New features

	A new oemof_examples [https://github.com/oemof/oemof-examples] repository
with some new examples was created.

	A new outputlib module has been created to provide a convenient data structure
for optimization results and enable quick analyses.
All decision variables of a Node are now collected automatically which
enables an easier development of custom components. See the revised
Handling Results documentation for more details or have a look at
the oemof_examples [https://github.com/oemof/oemof-examples] repository
for information on the usage. Keep your eyes open, some new functions will
come soon that make the processing of the results easier. See the actual pull
request or issues for detailed information.

	The transformer class can now be used with n inputs and n outputs (
~oemof.solph.network.Transformer)

	A new module with useful additional constraints were created with these
constraints global emission or investment limits can be set. Furthermore
it is possible to connect investment variables. Please add your own additional
constraints or let us know what is needed in the future.

	A module to create a networkx graph from your energy system or your
optimisation model was added. You can use networkx to plot and analyse graphs.
See the graph module in the documentation of oemof-network for more information.

	It’s now possible to modify a node’s <oemof.network.Node>
inputs <oemof.network.Node.inputs> and
outputs <oemof.network.Node.outputs> by inserting and removing
nodes <oemof.network.Node> to and from the correspoding dictionaries.
Outputs <oemof.network.Node.outputs> where already working
previously, but due to an implementation quirk, inputs
<oemof.network.Node.inputs> did not behave as expected. This is now fixed.

	One can now explicitly add <oemof.energy_system.EnergySystem.add>
nodes <oemof.network.Node> to an energy system
<oemof.energy_system.EnergySystem> in bulk using * and ** syntax. For
the latter case, the values <dict.values> of the dictionary passed in
will be added.

	New components can now be added to the custom.py module. Components in this module
are indicated as in a testing state. Use them with care. This lowers the entry
barriers to test new components within the solph structure and find other testers.

New components

	The nodes ElectricalLine <oemof.solph.custom.ElectricalLine>
and ElectricalBus <oemof.solph.custom.ElectricalBus> can be used
for Linear Optimal Powerflow calculation based on angle formulations.
These components have been added to the solph.custom module.
Though it should work correctly, it is in a preliminary stage.
Please check your results. Feedback is welcome!

	The custom component Link <oemof.solph.custom.Link> can now be used to model
a bidirectional connection within one component. Check out the example in the
oemof_examples [https://github.com/oemof/oemof-examples] repository.

	The component GenericCHP <oemof.solph.components.GenericCHP> can be
used to model different CHP types such as extraction or back-pressure turbines
and motoric plants. The component uses a mixed-integer linear formulation and
can be adapted to different technical layouts with a high level of detail.
Check out the example in the
oemof_examples [https://github.com/oemof/oemof-examples] repository.

	The component GenericCAES <oemof.solph.custom.GenericCAES> can be
used to model different concepts of compressed air energy storage. Technical
concepts such as diabatic or adiabatic layouts can be modelled at a high level
of detail. The component uses a mixed-integer linear formulation.

	The custom component
GenericOffsetTransformer <oemof.solph.custom.GenericOffsetTransformer>
can be used to model components with load ranges such as heat pumps and also
uses a mixed-integer linear formulation.

Documentation

	Large parts of the documentation have been proofread and improved since
the last developer meeting in Flensburg.

	The solph documentation has got an extra section with all existing components
(Solph components).

	The developer documentation has been developed to lower the barriers for new
developers. Furthermore, a template for pull request was created.

Known issues

	It is not possible to model one time step with oemof.solph. You have to model
at least two timesteps
(Issue #306 [https://github.com/oemof/oemof-solph/issues/306]). Please leave a
comment if this bug affects you.

Bug fixes

	LP-file tests are now invariant against sign changes in equations, because
the equations are now normalized to always have non-negative right hand
sides.

Testing

	All known and newly created components are now tested within an independent
testing environment which can be found in /tests/.

	Other testing routines have been streamlined and reviewed and
example tests have been integrated in the nosetest environment.

Other changes

	The plot functionalities have been removed completely from the outputlib as
they are less a necessary part but more an optional tool .
Basic plotting examples that show how to quickly create plots from
optimization results can now be found in the
oemof_examples [https://github.com/oemof/oemof-examples] repository.
You can still find the “old” standard plots within the
oemof_visio [https://github.com/oemof/oemof-visio] repository as they are
now maintained separately.

	A user forum [https://forum.openmod-initiative.org/tags/c/qa/oemof] has
been created to answer use questions.

Contributors

	Cord Kaldemeyer

	Jens-Olaf Delfs

	Stephan Günther

	Simon Hilpert

	Uwe Krien

v0.1.4 (March 28, 2017)

Bug fixes

	fix examples (issue #298 [https://github.com/oemof/oemof-solph/issues/298])

Documentation

	Adapt installation guide.

Contributors

	Uwe Krien

	Stephan Günther

v0.1.2 (March 27, 2017)

New features

	Revise examples - clearer naming, cleaner code, all examples work with cbc solver (issue #238 [https://github.com/oemof/oemof-solph/pull/238], issue #247 [https://github.com/oemof/oemof-solph/pull/247]).

	Add option to choose solver when executing the examples (issue #247 [https://github.com/oemof/oemof-solph/pull/247]).

	Add new transformer class: VariableFractionTransformer (child class of LinearTransformer). This class represents transformers with a variable fraction between its output flows. In contrast to the LinearTransformer by now it is restricted to two output flows.(issue #248 [https://github.com/oemof/oemof-solph/pull/248])

	Add new transformer class: N1Transformer (counterpart of LinearTransformer). This class allows to have multiple inputflows that are converted into one output flow e.g. heat pumps or mixing-components.

	Allow to set addtional flow attributes inside NodesFromCSV in solph inputlib

	Add economics module to calculate investment annuities (more to come in future versions)

	Add module to store input data in multiple csv files and merge by preprocessing

	Allow to slice all information around busses via a new method of the ResultsDataFrame

	Add the option to save formatted balances around busses as single csv files via a new method of the ResultsDataFrame

Documentation

	Improve the installation guide.

Bug fixes

	Allow conversion factors as a sequence in the CSV reader

Other changes

	Speed up constraint-building process by removing unnecessary method call

	Clean up the code according to pep8 and pylint

Contributors

	Cord Kaldemeyer

	Guido Plessmann

	Uwe Krien

	Simon Hilpert

	Stephan Günther

v0.1.1 (November 2, 2016)

Hot fix release to make examples executable.

Bug fixes

	Fix copy of default logging.ini (issue #235 [https://github.com/oemof/oemof-solph/issues/235])

	Add matplotlib to requirements to make examples executable after installation (issue #236 [https://github.com/oemof/oemof-solph/pull/236])

Contributors

	Guido Plessmann

	Uwe Krien

v0.1.0 (November 1, 2016)

The framework provides the basis for a great range of different energy
system model types, ranging from LP bottom-up (power and heat) economic dispatch
models with optional investment to MILP operational unit commitment models.

With v0.1.0 we refactored oemof (not backward compatible!) to bring the
implementation in line with the general concept. Hence, the API of components
has changed significantly and we introduced the new ‘Flow’ component. Besides
an extensive grouping functionality for automatic creation of constraints based
on component input data the documentation has been revised.

We provide examples to show the broad range of possible applications and the
frameworks flexibility.

API changes

	The demandlib is no longer part of the oemof package. It has its own
package now: (demandlib [https://github.com/oemof/demandlib])

New features

	Solph’s EnergySystem <oemof.solph.network.EnergySystem> now
automatically uses solph’s GROUPINGS
<oemof.solph.groupings.GROUPINGS> in addition to any user supplied
ones.
See the API documentation for more information.

	The groupings <oemof.groupings.Grouping> introduced in version
0.0.5 now have more features, more documentation and should generally be
pretty usable:

	They moved to their own module: oemof.groupings and deprecated
constructs ensuring compatibility with prior versions have been removed.

	It’s possible to assign a node to multiple groups from one
Grouping <oemof.groupings.Grouping> by returning a list of group
keys from key <oemof.groupings.Grouping.key>.

	If you use a non callable object as the key
<oemof.groupings.Grouping.key> parameter to Groupings
<oemof.groupings.Grouping>, the constructor will not make an attempt to
call them, but use the object directly as a key.

	There’s now a filter <oemof.groupings.Grouping.filter> parameter,
enabling a more concise way of filtering group contents than using
value <oemof.groupings.Grouping.value>.

Documentation

	Complete revision of the documentation. We hope it is now more intuitive and easier to understand.

Testing

	Create a structure to use examples as system tests (issue #160 [https://github.com/oemof/oemof-solph/pull/160])

Bug fixes

	Fix relative path of logger (issue #201 [https://github.com/oemof/oemof-solph/issues/201])

	More path fixes regarding installation via pip

Other changes

	Travis CI will now check PR’s automatically

	Examples executable from command-line (issue #227 [https://github.com/oemof/oemof-solph/pull/227])

Contributors

	Stephan Günther

	Simon Hilpert

	Uwe Krien

	Guido Pleßmann

	Cord Kaldemeyer

v0.0.7 (May 4, 2016)

Bug fixes

	Exclude non working pyomo version

v0.0.6 (April 29, 2016)

New features

	It is now possible to choose whether or not the heat load profile generated
with the BDEW heat load profile method should only include space heating
or space heating and warm water combined.
(Issue #130 [https://github.com/oemof/oemof-solph/issues/130])

	Add possibility to change the order of the columns of a DataFrame subset. This is useful to change the order of stacked plots. (Issue #148 [https://github.com/oemof/oemof-solph/pull/148])

Documentation

Testing

	Fix constraint tests (Issue #137 [https://github.com/oemof/oemof-solph/issues/137])

Bug fixes

	Use of wrong columns in generation of SF vector in BDEW heat load profile
generation (Issue #129 [https://github.com/oemof/oemof-solph/issues/129])

	Use of wrong temperature vector in generation of h vector in BDEW heat load
profile generation.

Other changes

Contributors

	Uwe Krien

	Stephan Günther

	Simon Hilpert

	Cord Kaldemeyer

	Birgit Schachler

v0.0.5 (April 1, 2016)

New features

	There’s now a flexible transformer
<oemof.core.network.entities.components._transformers.TwoInputsOneOutput>
with two inputs and one output.
(Issue #116 [https://github.com/oemof/oemof-solph/pull/116])

	You now have the option create special groups of entities in your energy
system. The feature is not yet fully implemented, but simple use cases are
usable already. (Issue #60 [https://github.com/oemof/oemof-solph/issues/60])

Documentation

	The documentation of the electrical demand
<oemof.demandlib.demand.electrical_demand> class has been cleaned up.

	The API documentation now has its own section so it
doesn’t clutter up the main
navigation sidebar so much anymore.

Testing

	There’s now a dedicated module/suite testing solph constraints.

	This suite now has proper fixtures (i.e. setup/teardown
methods) making them (hopefully) independent of the order in which they are
run (which, previously, they where not).

Bug fixes

	Searching for oemof’s configuration directory is now done in a platform
independent manner.
(Issue #122 [https://github.com/oemof/oemof-solph/issues/122])

	Weeks no longer have more than seven days.
(Issue #126 [https://github.com/oemof/oemof-solph/issues/126])

Other changes

	Oemof has a new dependency: dill [https://pypi.org/project/dill]. It
enables serialization of less common types and acts as a drop in replacement
for pickle [https://docs.python.org/3/library/pickle.html].

	Demandlib’s API has been simplified.

Contributors

	Uwe Krien

	Stephan Günther

	Guido Pleßmann

v0.0.4 (March 03, 2016)

New features

	Revise the outputlib according to (issue #54 [https://github.com/oemof/oemof-solph/issues/54])

	Add postheating device to transport energy between two buses with different temperature levels (issue #97 [https://github.com/oemof/oemof-solph/pull/97])

	Better integration with pandas

Documentation

	Update developer notes

Testing

	Described testing procedures in developer notes

	New constraint tests for heating buses

Bug fixes

	Use of pyomo fast build

	Broken result-DataFrame in outputlib

	Dumping of EnergySystem

Other changes

	PEP8

Contributors

	Cord Kaldemeyer

	Uwe Krien

	Simon Hilpert

	Stephan Günther

	Clemens Wingenbach

	Elisa Papdis

	Martin Soethe

	Guido Plessmann

v0.0.3 (January 29, 2016)

New features

	Added a class to convert the results dictionary to a multiindex DataFrame (issue #36 [https://github.com/oemof/oemof-solph/issues/36])

	Added a basic plot library (issue #36 [https://github.com/oemof/oemof-solph/issues/36])

	Add logging functionalities (issue #28 [https://github.com/oemof/oemof-solph/issues/28])

	Add entities_from_csv functionality for creating of entities from csv-files

	Add a time-depended upper bound for the output of a component (issue #65 [https://github.com/oemof/oemof-solph/pull/65])

	Add fast_build functionlity for pyomo models in solph module (issue #68 [https://github.com/oemof/oemof-solph/issues/68])

	The package is no longer named oemof_base but is now just called oemof.

	The results dictionary stored in the energy system now contains an
attribute for the objective function and for objects which have special
result attributes, those are now accessible under the object keys, too.
(issue #58 [https://github.com/oemof/oemof-solph/issues/58])

Documentation

	Added the Readme.rst as “Getting started” to the documentation.

	Fixed installation description (issue #38 [https://github.com/oemof/oemof-solph/issues/38])

	Improved the developer notes.

Testing

	With this release we start implementing nosetests (issue #47 [https://github.com/oemof/oemof-solph/issues/47]

	Tests added to test constraints and the registration process (issue #73 [https://github.com/oemof/oemof-solph/pull/73]).

Bug fixes

	Fix contraints in solph

	Fix pep8

Other changes

Contributors

	Cord Kaldemeyer

	Uwe Krien

	Clemens Wingenbach

	Simon Hilpert

	Stephan Günther

v0.0.2 (December 22, 2015)

New features

	Adding a definition of a default oemof logger (issue #28 [https://github.com/oemof/oemof-solph/issues/28])

	Revise the EnergySystem class according to the oemof developing meeting (issue #25 [https://github.com/oemof/oemof-solph/issues/25])

	Add a dump and restore method to the EnergySystem class to dump/restore its attributes (issue #31 [https://github.com/oemof/oemof-solph/issues/31])

	Functionality for minimum up- and downtime constraints (oemof.solph.linear_mixed_integer_constraints module)

	Add relax option to simulation class for calculation of linear relaxed mixed integer problems

	Instances of EnergySystem <oemof.core.energy_system.EnergySystem>
now keep track of Entities <oemof.core.network.Entity> via the
entities <oemof.core.energy_system.EnergySystem.entities> attribute.
(issue #20 [https://github.com/oemof/oemof-solph/issues/20])

	There’s now a standard way of working with the results obtained via a call
to OptimizationModel#results
<oemof.solph.optimization_model.OptimizationModel.results>.
See its documentation, the documentation of EnergySystem#optimize
<oemof.core.energy_system.EnergySystem.optimize> and finally the discussion
at issue #33 [https://github.com/oemof/oemof-solph/issues/33] for more
information.

	New class VariableEfficiencyCHP <oemof.core.network.entities.components._transformers.VariableEfficiencyCHP>
to model combined heat and power units with variable electrical efficiency.

	New methods for VariableEfficiencyCHP <oemof.core.network.entities.components._transformers.VariableEfficiencyCHP> inside
the solph-module:

	MILP-constraint <oemof.solph.linear_mixed_integer_constraints.add_variable_linear_eta_relation>

	Linear-constraint <oemof.solph.linear_constraints.add_eta_total_chp_relation>

Documentation

	missing docstrings of the core subpackage added (issue #9 [https://github.com/oemof/oemof-solph/issues/9])

	missing figures of the meta-documentation added

	missing content in developer notes (issue #34 [https://github.com/oemof/oemof-solph/pull/34])

Testing

Bug fixes

	now the api-docs can be read on readthedocs.org

	a storage automically calculates its maximum output/input if the capacity and the c-rate is given (issue #27 [https://github.com/oemof/oemof-solph/issues/27])

	Fix error in accessing dual variables in oemof.solph.postprocessing

Other changes

Contributors

	Uwe Krien

	Simon Hilpert

	Cord Kaldemeyer

	Guido Pleßmann

	Stephan Günther

v0.0.1 (November 25, 2015)

First release by the oemof developing group.

oemof.solph Logo

You are free to use or integrate the logo of oemof-solph in your projects. We
recommend using these logos instead of the logos with editable font,
since those might not display correctly, if e.g. a browser does not
support the font used in the logo.

Full logo

[image: Full logo]

Compact version

[image: Compact logo]

Logo without text

[image: No text]

Icon

[image: Icon]

 Python Module Index

 a |
 b |
 e |
 f |
 g |
 i |
 m |
 o |
 s |
 t |
 v

 		 	

 		
 a	

 	[image: -]
 	
 activity_costs	

 	
 	
 activity_costs.activity_costs	

 		 	

 		
 b	

 	[image: -]
 	
 basic_example	

 	
 	
 basic_example.basic_example	

 		 	

 		
 e	

 	[image: -]
 	
 electrical	

 	
 	
 electrical.lopf	

 	
 	
 electrical.transshipment	

 	[image: -]
 	
 emission_constraint	

 	
 	
 emission_constraint.emission_constraint	

 	[image: -]
 	
 excel_reader	

 	
 	
 excel_reader.dispatch	

 		 	

 		
 f	

 	[image: -]
 	
 flexible_modelling	

 	
 	
 flexible_modelling.add_constraints	

 	[image: -]
 	
 flow_count_limit	

 	
 	
 flow_count_limit.flow_count_limit	

 		 	

 		
 g	

 	[image: -]
 	
 generic_invest_limit	

 	
 	
 generic_invest_limit.example_generic_invest	

 	[image: -]
 	
 gradient_example	

 	
 	
 gradient_example.gradient_example	

 		 	

 		
 i	

 	[image: -]
 	
 investment_with_minimal_invest	

 	
 	
 investment_with_minimal_invest.minimal_invest	

 		 	

 		
 m	

 	[image: -]
 	
 min_max_runtimes	

 	
 	
 min_max_runtimes.min_max_runtimes	

 		 	

 		
 o	

 	[image: -]
 	
 oemof	

 	
 	
 oemof.solph._console_scripts	

 	
 	
 oemof.solph._energy_system	

 	
 	
 oemof.solph._groupings	

 	
 	
 oemof.solph._helpers	

 	
 	
 oemof.solph._models	

 	
 	
 oemof.solph._options	

 	
 	
 oemof.solph._plumbing	

 	
 	
 oemof.solph.buses._bus	

 	
 	
 oemof.solph.components._extraction_turbine_chp	

 	
 	
 oemof.solph.components._generic_chp	

 	
 	
 oemof.solph.components._generic_storage	

 	
 	
 oemof.solph.components._offset_transformer	

 	
 	
 oemof.solph.components._sink	

 	
 	
 oemof.solph.components._source	

 	
 	
 oemof.solph.components._transformer	

 	
 	
 oemof.solph.components.experimental._generic_caes	

 	
 	
 oemof.solph.components.experimental._link	

 	
 	
 oemof.solph.components.experimental._piecewise_linear_transformer	

 	
 	
 oemof.solph.components.experimental._sink_dsm	

 	
 	
 oemof.solph.constraints	

 	
 	
 oemof.solph.flows._flow	

 	
 	
 oemof.solph.flows._invest_non_convex_flow_block	

 	
 	
 oemof.solph.flows._investment_flow_block	

 	
 	
 oemof.solph.flows._non_convex_flow_block	

 	
 	
 oemof.solph.flows._simple_flow_block	

 	
 	
 oemof.solph.flows.experimental._electrical_line	

 	
 	
 oemof.solph.processing	

 	
 	
 oemof.solph.views	

 		 	

 		
 s	

 	[image: -]
 	
 simple_dispatch	

 	
 	
 simple_dispatch.simple_dispatch	

 	[image: -]
 	
 start_and_shutdown_costs	

 	
 	
 start_and_shutdown_costs.startup_shutdown	

 	[image: -]
 	
 storage_balanced_unbalanced	

 	
 	
 storage_balanced_unbalanced.storage	

 	[image: -]
 	
 storage_investment	

 	
 	
 storage_investment.v1_invest_optimize_all_technologies	

 	
 	
 storage_investment.v2_invest_optimize_only_gas_and_storage	

 	
 	
 storage_investment.v3_invest_optimize_only_storage_with_fossil_share	

 	
 	
 storage_investment.v4_invest_optimize_all_technologies_with_fossil_share	

 		 	

 		
 t	

 	[image: -]
 	
 time_index_example	

 	
 	
 time_index_example.time_index_example	

 	[image: -]
 	
 tuple_as_labels	

 	
 	
 tuple_as_labels.tuple_as_label	

 		 	

 		
 v	

 	[image: -]
 	
 variable_chp	

 	
 	
 variable_chp.variable_chp	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	_activity_costs() (oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_create_constraints() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._investment_flow_block.InvestmentFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	(oemof.solph.flows._simple_flow_block.SimpleFlowBlock method)

 	_create_sets() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._investment_flow_block.InvestmentFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	(oemof.solph.flows._simple_flow_block.SimpleFlowBlock method)

 	_create_variables() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._investment_flow_block.InvestmentFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	(oemof.solph.flows._simple_flow_block.SimpleFlowBlock method)

 	_inactivity_costs() (oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_linearised_investment_constraint_1() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	_linearised_investment_constraint_2() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	_linearised_investment_constraint_3() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	_linearised_investment_constraints() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	_max_shutdown_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_max_startup_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_maximum_flow_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	
 	_maximum_invest_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	_min_downtime_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_min_uptime_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_minimum_flow_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_minimum_invest_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	_objective_expression() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._investment_flow_block.InvestmentFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	(oemof.solph.flows._simple_flow_block.SimpleFlowBlock method)

 	_sets_for_non_convex_flows() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_shared_constraints_for_non_convex_flows() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_shutdown_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_shutdown_costs() (oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_startup_constraint() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_startup_costs() (oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_status_nominal_constraint() (oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

 	_variables_for_non_convex_flows() (oemof.solph.flows._invest_non_convex_flow_block.InvestNonConvexFlowBlock method)

 	(oemof.solph.flows._non_convex_flow_block.NonConvexFlowBlock method)

A

 	
 	activity_costs.activity_costs (module)

 	additional_investment_flow_limit() (in module oemof.solph.constraints)

 	
 	All (oemof.solph.views.NodeOption attribute)

 	alphas (oemof.solph.components._generic_chp.GenericCHP attribute)

B

 	
 	BaseModel (class in oemof.solph._models)

 	basic_example.basic_example (module)

 	
 	Bus (class in oemof.solph.buses._bus)

 	BusBlock (class in oemof.solph.buses._bus)

C

 	
 	check_node_object_for_missing_attribute() (in module oemof.solph._helpers)

 	check_oemof_installation() (in module oemof.solph._console_scripts)

 	CONSTRAINT_GROUP (oemof.solph.components._extraction_turbine_chp.ExtractionTurbineCHPBlock attribute)

 	(oemof.solph.components._generic_chp.GenericCHPBlock attribute)

 	(oemof.solph.components._generic_storage.GenericInvestmentStorageBlock attribute)

 	(oemof.solph.components._generic_storage.GenericStorageBlock attribute)

 	(oemof.solph.components._offset_transformer.OffsetTransformerBlock attribute)

 	(oemof.solph.components.experimental._generic_caes.GenericCAESBlock attribute)

 	(oemof.solph.components.experimental._link.LinkBlock attribute)

 	(oemof.solph.components.experimental._piecewise_linear_transformer.PiecewiseLinearTransformerBlock attribute)

 	(oemof.solph.components.experimental._sink_dsm.SinkDSMDIWBlock attribute)

 	(oemof.solph.components.experimental._sink_dsm.SinkDSMDIWInvestmentBlock attribute)

 	(oemof.solph.components.experimental._sink_dsm.SinkDSMDLRBlock attribute)

 	(oemof.solph.components.experimental._sink_dsm.SinkDSMDLRInvestmentBlock attribute)

 	(oemof.solph.components.experimental._sink_dsm.SinkDSMOemofBlock attribute)

 	(oemof.solph.components.experimental._sink_dsm.SinkDSMOemofInvestmentBlock attribute)

 	(oemof.solph.flows.experimental._electrical_line.ElectricalLineBlock attribute)

 	constraint_group() (oemof.solph.buses._bus.Bus method)

 	(oemof.solph.components._extraction_turbine_chp.ExtractionTurbineCHP method)

 	(oemof.solph.components._generic_chp.GenericCHP method)

 	(oemof.solph.components._generic_storage.GenericStorage method)

 	(oemof.solph.components._offset_transformer.OffsetTransformer method)

 	(oemof.solph.components._sink.Sink method)

 	(oemof.solph.components._source.Source method)

 	(oemof.solph.components._transformer.Transformer method)

 	(oemof.solph.components.experimental._generic_caes.GenericCAES method)

 	(oemof.solph.components.experimental._link.Link method)

 	(oemof.solph.components.experimental._piecewise_linear_transformer.PiecewiseLinearTransformer method)

 	(oemof.solph.components.experimental._sink_dsm.SinkDSM method)

 	(oemof.solph.flows.experimental._electrical_line.ElectricalLine method)

 	
 	constraint_grouping() (in module oemof.solph._groupings)

 	CONSTRAINT_GROUPS (oemof.solph._models.BaseModel attribute)

 	(oemof.solph._models.Model attribute)

 	convert_keys_to_strings() (in module oemof.solph.processing)

 	convert_to_multiindex() (in module oemof.solph.views)

 	create_dataframe() (in module oemof.solph.processing)

 	create_time_index() (in module oemof.solph._energy_system)

D

 	
 	divide_scalars_sequences() (in module oemof.solph.processing)

E

 	
 	electrical.lopf (module)

 	electrical.transshipment (module)

 	ElectricalLine (class in oemof.solph.flows.experimental._electrical_line)

 	ElectricalLineBlock (class in oemof.solph.flows.experimental._electrical_line)

 	emission_constraint.emission_constraint (module)

 	emission_limit() (in module oemof.solph.constraints)

 	
 	EnergySystem (class in oemof.solph._energy_system)

 	equate_flows() (in module oemof.solph.constraints)

 	equate_variables() (in module oemof.solph.constraints)

 	excel_reader.dispatch (module)

 	ExtractionTurbineCHP (class in oemof.solph.components._extraction_turbine_chp)

 	ExtractionTurbineCHPBlock (class in oemof.solph.components._extraction_turbine_chp)

F

 	
 	filter_nodes() (in module oemof.solph.views)

 	flexible_modelling.add_constraints (module)

 	
 	Flow (class in oemof.solph.flows._flow)

 	flow_count_limit.flow_count_limit (module)

G

 	
 	generic_integral_limit() (in module oemof.solph.constraints)

 	generic_invest_limit.example_generic_invest (module)

 	GenericCAES (class in oemof.solph.components.experimental._generic_caes)

 	GenericCAESBlock (class in oemof.solph.components.experimental._generic_caes)

 	GenericCHP (class in oemof.solph.components._generic_chp)

 	GenericCHPBlock (class in oemof.solph.components._generic_chp)

 	
 	GenericInvestmentStorageBlock (class in oemof.solph.components._generic_storage)

 	GenericStorage (class in oemof.solph.components._generic_storage)

 	GenericStorageBlock (class in oemof.solph.components._generic_storage)

 	get_node_by_name() (in module oemof.solph.views)

 	get_timestep() (in module oemof.solph.processing)

 	get_tuple() (in module oemof.solph.processing)

 	gradient_example.gradient_example (module)

H

 	
 	HasInputs (oemof.solph.views.NodeOption attribute)

 	HasOnlyInputs (oemof.solph.views.NodeOption attribute)

 	
 	HasOnlyOutputs (oemof.solph.views.NodeOption attribute)

 	HasOutputs (oemof.solph.views.NodeOption attribute)

I

 	
 	Investment (class in oemof.solph._options)

 	investment_limit() (in module oemof.solph.constraints)

 	
 	investment_with_minimal_invest.minimal_invest (module)

 	InvestmentFlowBlock (class in oemof.solph.flows._investment_flow_block)

 	InvestNonConvexFlowBlock (class in oemof.solph.flows._invest_non_convex_flow_block)

L

 	
 	limit_active_flow_count() (in module oemof.solph.constraints)

 	limit_active_flow_count_by_keyword() (in module oemof.solph.constraints)

 	
 	Link (class in oemof.solph.components.experimental._link)

 	LinkBlock (class in oemof.solph.components.experimental._link)

 	LoggingError

M

 	
 	max_up_down (oemof.solph._options.NonConvex attribute)

 	meta_results() (in module oemof.solph.processing)

 	
 	min_max_runtimes.min_max_runtimes (module)

 	Model (class in oemof.solph._models)

N

 	
 	net_storage_flow() (in module oemof.solph.views)

 	node() (in module oemof.solph.views)

 	node_input_by_type() (in module oemof.solph.views)

 	node_output_by_type() (in module oemof.solph.views)

 	
 	node_weight_by_type() (in module oemof.solph.views)

 	NodeOption (class in oemof.solph.views)

 	NonConvex (class in oemof.solph._options)

 	NonConvexFlowBlock (class in oemof.solph.flows._non_convex_flow_block)

O

 	
 	oemof.solph._console_scripts (module)

 	oemof.solph._energy_system (module)

 	oemof.solph._groupings (module)

 	oemof.solph._helpers (module)

 	oemof.solph._models (module)

 	oemof.solph._options (module)

 	oemof.solph._plumbing (module)

 	oemof.solph.buses._bus (module)

 	oemof.solph.components._extraction_turbine_chp (module)

 	oemof.solph.components._generic_chp (module)

 	oemof.solph.components._generic_storage (module)

 	oemof.solph.components._offset_transformer (module)

 	oemof.solph.components._sink (module)

 	oemof.solph.components._source (module)

 	oemof.solph.components._transformer (module)

 	
 	oemof.solph.components.experimental._generic_caes (module)

 	oemof.solph.components.experimental._link (module)

 	oemof.solph.components.experimental._piecewise_linear_transformer (module)

 	oemof.solph.components.experimental._sink_dsm (module)

 	oemof.solph.constraints (module)

 	oemof.solph.flows._flow (module)

 	oemof.solph.flows._invest_non_convex_flow_block (module)

 	oemof.solph.flows._investment_flow_block (module)

 	oemof.solph.flows._non_convex_flow_block (module)

 	oemof.solph.flows._simple_flow_block (module)

 	oemof.solph.flows.experimental._electrical_line (module)

 	oemof.solph.processing (module)

 	oemof.solph.views (module)

 	OffsetTransformer (class in oemof.solph.components._offset_transformer)

 	OffsetTransformerBlock (class in oemof.solph.components._offset_transformer)

P

 	
 	parameter_as_dict() (in module oemof.solph.processing)

 	
 	PiecewiseLinearTransformer (class in oemof.solph.components.experimental._piecewise_linear_transformer)

 	PiecewiseLinearTransformerBlock (class in oemof.solph.components.experimental._piecewise_linear_transformer)

R

 	
 	receive_duals() (oemof.solph._models.BaseModel method)

 	relax_problem() (oemof.solph._models.BaseModel method)

 	
 	remove_timestep() (in module oemof.solph.processing)

 	results() (in module oemof.solph.processing)

 	(oemof.solph._models.BaseModel method)

S

 	
 	sequence() (in module oemof.solph._plumbing)

 	set_result_index() (in module oemof.solph.processing)

 	shared_limit() (in module oemof.solph.constraints)

 	simple_dispatch.simple_dispatch (module)

 	SimpleFlowBlock (class in oemof.solph.flows._simple_flow_block)

 	Sink (class in oemof.solph.components._sink)

 	SinkDSM (class in oemof.solph.components.experimental._sink_dsm)

 	SinkDSMDIWBlock (class in oemof.solph.components.experimental._sink_dsm)

 	SinkDSMDIWInvestmentBlock (class in oemof.solph.components.experimental._sink_dsm)

 	SinkDSMDLRBlock (class in oemof.solph.components.experimental._sink_dsm)

 	
 	SinkDSMDLRInvestmentBlock (class in oemof.solph.components.experimental._sink_dsm)

 	SinkDSMOemofBlock (class in oemof.solph.components.experimental._sink_dsm)

 	SinkDSMOemofInvestmentBlock (class in oemof.solph.components.experimental._sink_dsm)

 	solve() (oemof.solph._models.BaseModel method)

 	Source (class in oemof.solph.components._source)

 	start_and_shutdown_costs.startup_shutdown (module)

 	storage_balanced_unbalanced.storage (module)

 	storage_investment.v1_invest_optimize_all_technologies (module)

 	storage_investment.v2_invest_optimize_only_gas_and_storage (module)

 	storage_investment.v3_invest_optimize_only_storage_with_fossil_share (module)

 	storage_investment.v4_invest_optimize_all_technologies_with_fossil_share (module)

T

 	
 	time_index_example.time_index_example (module)

 	Transformer (class in oemof.solph.components._transformer)

 	
 	TransformerBlock (class in oemof.solph.components._transformer)

 	tuple_as_labels.tuple_as_label (module)

V

 	
 	variable_chp.variable_chp (module)

W

 	
 	warn_if_missing_attribute() (in module oemof.solph._helpers)

 _static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to oemof’s documentation!

 		
 oemof.solph

 		
 Introduction

 		
 Documentation

 		
 Installation

 		
 Installing a solver

 		
 Installation test

 		
 Contributing

 		
 Citing

 		
 Examples

 		
 License

 		
 User’s guide

 		
 How can I use solph?

 		
 Handling of Warnings

 		
 Set up an energy system

 		
 Add components to the energy system

 		
 Optimise your energy system

 		
 Analysing your results

 		
 Solph components

 		
 Sink (basic)

 		
 Source (basic)

 		
 Transformer (basic)

 		
 ExtractionTurbineCHP (component)

 		
 GenericCHP (component)

 		
 GenericStorage (component)

 		
 OffsetTransformer (component)

 		
 ElectricalLine (experimental)

 		
 GenericCAES (experimental)

 		
 Link (experimental)

 		
 SinkDSM (experimental)

 		
 Investment optimisation

 		
 Mixed Integer (Linear) Problems

 		
 Dispatch Optimization

 		
 Combination of Dispatch and Investment Optimisation

 		
 Adding additional constraints

 		
 The Grouping module (Sets)

 		
 Using the Excel (csv) reader

 		
 Handling Results

 		
 Collecting results

 		
 General approach

 		
 Easy access

 		
 API Reference

 		
 oemof.solph.buses.Bus

 		
 oemof.solph.components

 		
 Sink

 		
 Source

 		
 Transformer

 		
 extractionTurbineCHP

 		
 GenericCHP

 		
 GenericStorage

 		
 OffsetTransformer

 		
 experimental.ElectricalLine

 		
 experimental.GenericCAES

 		
 experimental.Link

 		
 experimental.PiecewiseLinearTransformer

 		
 experimental.SinkDSM

 		
 oemof.solph.console_scripts

 		
 oemof.solph.constraints

 		
 oemof.solph.EnergySystem

 		
 oemof.solph.Flow

 		
 Flow

 		
 SimpleFlow

 		
 InvestmentFlow

 		
 NonConvexFlow

 		
 InvestNonConvexFlow

 		
 oemof.solph.groupings

 		
 oemof.solph.helpers

 		
 oemof.solph.models

 		
 oemof.solph.options

 		
 oemof.solph.plumbing

 		
 oemof.solph.processing

 		
 oemof.solph.views

 		
 Examples

 		
 Basic example

 		
 General description

 		
 Data

 		
 Installation requirements

 		
 License

 		
 Basic Time Index

 		
 General description

 		
 Installation requirements

 		
 License

 		
 Activity costs

 		
 General description

 		
 Installation requirements

 		
 License

 		
 Balanced and unbalanced storage

 		
 General description

 		
 Installation requirements

 		
 License

 		
 Electrical

 		
 Linear optimal power flow (lopf)

 		
 Transshipment

 		
 Emission constraint

 		
 General description

 		
 Installation requirements

 		
 License

 		
 Flexible modelling

 		
 Add constraints

 		
 Flow count limit

 		
 General description

 		
 Installation requirements

 		
 License

 		
 Flow gradient

 		
 General description

 		
 Installation requirements

 		
 License

 		
 Generic Invest limit

 		
 Installation requirements

 		
 License

 		
 Investment with minimal invest

 		
 Installation requirements

 		
 License

 		
 Minimal and maximal runtime

 		
 General description

 		
 Installation requirements

 		
 License

 		
 Simple heat and power dispatch

 		
 General description

 		
 Data

 		
 Installation requirements

 		
 License

 		
 Spreadsheet (Excel) Reader

 		
 General description

 		
 Data

 		
 Installation requirements

 		
 License

 		
 Start and shutdown costs

 		
 General description

 		
 Installation requirements

 		
 License

 		
 Storage investment

 		
 Optimize all technologies

 		
 Optimize only gas and storage

 		
 Optimize only storage with fossil share

 		
 Optimize all technologies with fossil share

 		
 Tuple as label

 		
 General description

 		
 Data

 		
 Installation requirements

 		
 License

 		
 Variable CHP

 		
 General description

 		
 Installation requirements

 		
 License

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tests

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 v0.4.5 (January 23th, 2023)

 		
 New features

 		
 Bug fixes

 		
 Testing

 		
 Contributors

 		
 v0.4.4 (June 1st, 2021)

 		
 API changes

 		
 New components/constraints

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.4.2 (May, 11, 2021)

 		
 v0.4.1 (June 24, 2020)

 		
 Bug fixes

 		
 Known issues

 		
 Contributors

 		
 v0.4.0 (June 6, 2020)

 		
 API changes

 		
 New features

 		
 New components/constraints

 		
 Documentation

 		
 Known issues

 		
 Testing

 		
 Other changes

 		
 Contributors

 		
 v0.3.2 (November 29, 2019)

 		
 New features

 		
 New components

 		
 Documentation

 		
 Other changes

 		
 Contributors

 		
 v0.3.1 (June 11, 2019)

 		
 Other changes

 		
 Contributors

 		
 v0.3.0 (June 5, 2019)

 		
 API changes

 		
 New features

 		
 Documentation

 		
 Bug fixes

 		
 Testing

 		
 Contributors

 		
 v0.2.3 (November 21, 2018)

 		
 Bug fixes

 		
 Contributors

 		
 v0.2.2 (July 1, 2018)

 		
 API changes

 		
 New features

 		
 New components

 		
 Documentation

 		
 Known issues

 		
 Bug fixes

 		
 Testing

 		
 Other changes

 		
 Contributors

 		
 v0.2.1 (March 19, 2018)

 		
 API changes

 		
 New features

 		
 Documentation

 		
 Known issues

 		
 Bug fixes

 		
 Testing

 		
 Other changes

 		
 Contributors

 		
 v0.2.0 (January 12, 2018)

 		
 API changes

 		
 New features

 		
 New components

 		
 Documentation

 		
 Known issues

 		
 Bug fixes

 		
 Testing

 		
 Other changes

 		
 Contributors

 		
 v0.1.4 (March 28, 2017)

 		
 Bug fixes

 		
 Documentation

 		
 Contributors

 		
 v0.1.2 (March 27, 2017)

 		
 New features

 		
 Documentation

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.1.1 (November 2, 2016)

 		
 Bug fixes

 		
 Contributors

 		
 v0.1.0 (November 1, 2016)

 		
 API changes

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.7 (May 4, 2016)

 		
 Bug fixes

 		
 v0.0.6 (April 29, 2016)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.5 (April 1, 2016)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.4 (March 03, 2016)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.3 (January 29, 2016)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.2 (December 22, 2015)

 		
 New features

 		
 Documentation

 		
 Testing

 		
 Bug fixes

 		
 Other changes

 		
 Contributors

 		
 v0.0.1 (November 25, 2015)

 		
 oemof.solph Logo

 		
 Full logo

 		
 Compact version

 		
 Logo without text

 		
 Icon

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

